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ALGEBRAIC AND PROBABILISTIC BASES FOR FUZZY SETS

AND THE DEVELOPMENT OF FUZZY CONDITIONING

I.R. Goodman

Code 421, Command & Control Department
Naval Ocean Systems Center
San Diego, CA 92152-5000

AbstracL This paper first develops an extension of the Negoita-Ralescu
Representation Theorem for fuzzy sets in terms of flou sets relative to
operators and partitionings. It then reviews in some detail both the
random set/random variable basis for fuzzy sets, as well as the
foundation of conditional event algebras. Both of these areas are tied
together, first in the form of conditional event indicator functions, and
then through the development of conditioning fuzzy sets. Specificially,
it is shown that the structure of conditional event algebra as proposed
here drives the structure for fuzzy conditioning, resulting in conditional
fuzzy sets being necessarily of a simple form relative to their
membership functions to a given marginal. It is seen that with this
approach, a full calculus of operations, extending that of ordinary
conditional events, is obtained.

Keywords. Fuzzy sets, membership functions, flou sets, conditional
fuzzy sets, random sets, partitionings, conditional event algebra.

1. Introduction.

Even after twenty-five years following Zadeh's introduction of fuzzy sets (1965),

controversy still persists in this arena of uncertainy modeling: I. Should one choose a

fuzzy set or probability approach to a particular problem at hand? 2. Can objetive

criteria be set up for comparing and contrasting fuzzy sets and probability? 3. What,

exactly, are the relations between the two approaches and can they be reconciled with

each other? 4. Can an analogue of conditioning in probability be established for fuzzy

sets, especially in light of the newly-developed area of conditional event algebra

(Goodman & Nguyen, (1988), Goodman, Nguyen, Walker (1991))?

T'e first question still remains an open issue to this day. An approach to answering the

second one has been done through the use of game theory, as proposed by Lindley

(1982) and reconsidered by Goodman, Nguyen & Rogers (1991). As for question three,

previously Goodman (1981), Hohle (1982). and Goodman & Nguyen (1985), among

others, initiated work on relating directly fuzzy sets and probability through random set

theory. In another direction, Negoita & Ralescu have considered the relationship
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between fuzzy setb and certain collections of nested ordinary sets (or "flou" sets)
(1975), while Gaines has c'onsidered both fuzzy sets and probability logic from a
common algebraic framework (1978). (See Goodman & Nguyen (1985, Chapter 7) for
a more thorough history of attempts at contiecting fuzzy sets with probability.) The last
question has been addressed by a number of individuals. E.g., Mattila (1986), Sembi &
Mamdani (1979), and Yager (1983) consider extensions and modifications of ordinary
material implication, while Zadeh k1378), Nguyen (1978), Hisdal (1978), Boucbon
(1987), and Goodman & Stein (1980) approached fuzzy conditioning with at least some

concept of conditional probability relative to ordinary sets in mind.

A common theme underlies the above issues and their responses: there is a real need to,
once and for all, establish a unifying approach to fuzzy sets, their algebraic or syntactic

bases, and their internal and external relations to probability Recently, conditioning in
probability has been re-examined and it has been demonstrated that a firm algebraic

basis -- in additC, .i the usual numerically-oriented approach -- can be derived for

conditioning. (See Schay (1968), Adams (1975), Cdabrese (1987), and Goodman,
Nguyen, & Walker (1991), as well as the work of Dubois & Prade (1990).) Thus,it
would also be desirable to be able to extend the above work to fuzzy sets based on firm

logical considerations.

The purpose of this paper is twofeld: First, to develop a sound algebraic basis for fuzzy

sets, based upon the fundamental work o' -'eg-'ita & Ralescu (1975). Th;s will serve as
a lead-in to the probability basis for fuzzy set.. In short, flou sets -- and a new
alternmutive, but equivalent, representation in the forn. :r ordered partitionings -- are
proposed as the natural candidates for the syntactic foundatil,.; of fuzzy sets,
underlying the semantic evaluations: fuzzy set membership functions. However, the
scope here is a iimited one and the very generalized set theory encompassing fuz) sets
in the form of categories and pseudotopoi will not be treated here. (See, e.g., Barr

(1989), Eytan (1981), Pitts (1982), Goguen (1974), and Stout (1984).)

In addition, extensions of the Stone Representation Theorem to fuzzy sets as, e.g.,
treated in Glas (1984) and Belluce (1986) will not be considered. The second goal of
this paper is to be able to apply the basic algebraic and probabilistic foundations for

fuzzy sets to the development of conditioning and related concepts.

This paper cunmists of eight additional sections. In section 2 the basic spaces are
considred: partitioning, flou, and membership function spaces and their bijections. In
section 3 a standard procedure is reviewed for inducing isomorphisms from bij.ction'
relative to the base spaces. Section 4 develops operations isomorphic to fuzzy set
membership operations, including cartesian products, sums, intersections, unions,
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complements, functional and inverse functional transforms, among others. A similar

develop-ient for partitioning sets is given in section 5. Section 6 reviews briefly

conditioning of ordinary sets and establishes a connection with three-valued fuzzy set

membership functions as a special case of finite-valued membership fLn'tions. In

section 7, logical modeis for fuzzy sets are characterized. In turn, external probabilities

of fuzzy sct membership functions are determined. These are especially useful as a

raticale fRr ingle figures-of-merit for fuzzy sets -- analogous to the moments of cdf s.

In a direction opposite to section 7, the underlying probability basis for fuzzy sets is

summarized in section 8. The focus here is the uniform randomization of flou sets and

partitioning sets, as well as their isomorphic relations to the class of membership

functions. (A third connection between probability and fuzzy sets is given briefly at the

end of sect. 4 via cdf s as formal fuzzy set me-nbership functions.) Finally, in section 9

conditional fuzzy sets are defined, based upon random set considerations as developed

in the previous sections. A full calculus of operations and relations is derived,

extending all of the previous results obtained for ordinary conditional events to fuzzy

sets.

2. Fundamental Spaces and Bijective Mappings.

Throughout the remaining paper denote the unit interval [0, 1] = {t: 0 < t S 1) by u.

Also, let SET denote the collection of all well-defined sets and consider the operators

Part, Flou, Mem:SET -4 SET and mappings on SET, 0, V, where for all X E SET,

O(X) : Flou(X) -4 Mem(X) and itXX) : Part(X) -. Flou(X).

d
Part(X) = set of all ordered disjoint nonvacuous exhaustive pattionings q of

X, where typically (2.1)

q=(q dJq, 0 *Jq Cu; qt E ,(X); qs o q t = 0, s*t; v qt =X. (2.2)
q tEJt q

d
Flou(X) = set of all flou sets (see originally Gentilhomme (1968)) a of X,

where typically (2.3;

a=(at)tEu, X=a 0  a s a t a I ? 0; e) at = a su p(J) , all Jcu; 0<st_5l1 (2.4)
tE J

arbitrary real. The right hand side relation is continuity from above.

d
Mem(X) = set of all fuzzy set membership functtons f of X

= u X= (f: f: X - u , (2.5)
including all ordinary set indicator functions g : X - 0, 11

O(X). Flou(X) - Mem(X), the fundamental membership napping is defined for any



4 L.R Goodman

a e Flou(X), M(X)(a) X -. u, where for all x e X,
d

0(X,(a)(x) = sup t : t E u & x E at}. (2.6)

VX):Part(X) -4 Flou(X) is the fundamental fuzzy set forming mapping, where for any

qePart(X) andany tEu,

d
(<X)(q)) t = ujqs : s E Jq & t! <s!5 1). (2.7)

All of this leads to

Theorem 2.1. For each X e SET, O(X) is a bijection, with inverse O(X)I

Mem(X) -, Flou(X) given for any f e Mem(X) as O(X)'I (f) E Flou(X), where for all

t E U,
d(O(x)'I(f))t = r[t, 1] = (x : x E X & 1 > f(x) (2.8)

the tth-level (or cut) set of f. Note also that for all x E X, the supremum in eq. (2.6) is

always achieved, so that

x e a (X)(a)(x), all x e X. (2.9)

Proof. Though Negoita & Ralescu (1975) have developed a representation theorem

with a slightly different form, for purposes of completeness, a full proof for the present

version will be presented here.

Obviously, O(X) is well-defined. For any f e Mem(X), define 0(X)l (f) as in (2.8).

Clearly, from the basic properties of inverse functions, O(X) 'I(f) satisfies property left

hand side of (2.4). For the right hand side of (2.4) let J c u arbitrary (nonvacuous).

Then, for any x x, x E nf'1 [t, 11 : t E J) iff f(x) > J iff f(x) > sup(J) iff

x E f'I [sPo(J), 1]. Thus, (2.4) is satisfied and O(X)'I(f) E Flou(X). In turn, for any

X e X, $0(' X)<x) l (f))(x) = supt : t E u & X E f'I[t, 1])

= sup{ . t c u & t < f(x)) = f(x), implying that O(X) is surjective with O(X) "! being

a candid.te for ":s inverse. Next, let a E Fleu(X) arbitrary and for any t e u,

O(€X)' (O(X)(a)))t = O(X)(a)' It, I] = (x : x c X & O(X)(a)(x) _> t)

=(x:xeX & sup(s:s E u & xe as )2!t. (2.10)

Now, if xE a,, then clearly sup(s :E u & xE as) t. Conversely, if the sup t,

d
then letting Jx = {s : s E u & x E as, by RHS (2.4) property,
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xEC()(a 5  x seuJ)=a wit sup(J ) ! t, whence x e a c a

s J ) =a ( wi) x sup(J,) .

Thus, for all t eu, x ea iff sups : s Eu & x ea s t; all x EX. (2.11)
Combining (2. 10) and (2.11) shows

(OX-(()a)t= (x :x e a t at, (2.12)

verifying that for all a E Flou(X),

OX-OX)a)= a. (2.13)
It is readily seen that (2.13) is sufficient to show that O(X) is injective. SincfL O(X)

was also shown to be suijective, the above shows that it is bijective. Finally, (2.13)
also shows (2.9) directly.M

Theorem 2.2. ip(X) is a bijection with inverse WX I:Flou(X) -4 Part(X), given for

any a E Flou(X) as W(X) 1 I(a) e Part(X), with index set

V(X)- (a) t
where

a +=uOa t < S51). t EU, (2.15)

and where for all te E I("() i.e.., - a t +0.

(ip(X)- (a)), = at- a + (2.16)

with the convention that

a+ = u(a) s 0. (2.17)
1 0

Proof: First, note that for any q E Part(X), aisd hence W(X)(q) e Flou(X): For all

(VX(O= u s E J q) X ; (1'(X)(q))5 = u(q r : r EJ q , s: r)

? (q r : r EJ q t:5r) = (V4X)(q))t.(218

verifying the left hand side of (2.4). For any K c u, let x e (Wp(X)(q)) spK*Thus,

there exists S E J with s : sup(K) such that x e q 5. Hence, for each t e K, there

exists s e J qwith s > sup(K) and X E q S' Hence,

x E (w(X)(q)),~ K C () q5  (V4X)(q)t (2.19)
StEK tS 1 tEK

Conversely, let x c o~ (VI(X)(q)) t Since q is a partitioning of X, there is a unique
tE K

t oE J such that x e q~ t. Thus, Xc E (uI(X)(q)) t becomes: for all t E K,

x e (V4X)(q))t, so that for each t E K, there is an S E JI with t! 5S, XE 6sq5 to,
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noting that to  K. Hence
x e qt , [ (s = (VX)(q))sup(K) (2.20)U sEIsup(K),l]"d qs

Combining (2.19) and (2.20) shows the right hand side of (2.4) holding. Hence (2.4)
completely holds and V4X)(q) e Flou(X). Hence, !VKX) : Part(X) -4 Flou(X) is a

we',)-defined mapping.

Next, consider the mapping O(X)0ip(X) : Part(X) -. Mem(X) which is also well-defined
since 0 and V are. For any f e Mere(X), consider the partitioning

d d Iq(f) = ((q(f))s)56 Ir ;J = range(f) = (f(x) : x E X) ; (q(f))s = r" (s), (2.21)
r

for all s e Jr Then, for all x E X, using (2.21),
O(X)(VX)(q(f)))(x) = sup(t : t e u & x E u f'I(s))

(seJfmts)

=sup(t : t E U & X E f1 [It, 11) = f(x), (2.22)

showing O(X).W(X) is surjective with

(O(X)VX))(q(f)) = f, all f e Mem(X). (2.23)

next, for each q E Part(X), define fq E Mem(X) by, for all x E X,

d
f (x) = s, for that unique s E Jq for which x r- q. (2.24)

Clearly, (2.24) is equivalent to the relation

fqI(s) = qs' all sd q. (2.25)

Note, using the notation of (2.21), Jfq = range(f = Jq, and since for all s Jfq

(2.25) shows (q(f q))s = f l(s) = qs, then one has

a(f q) = q. (2.26)
Finally, replacing f by fq in (2.23), using (2.26), shows that

(O(X)oV<X))(q) = f q . (2.27)
In turn, (2.27) shows that O(X)o(X) is also injecuve. Hence, by the previously
established property of being surjective, O(X)oVX) is bijective.

Next, (2.23) in conjunction with the bijectivity of O(X)0.p(X) shows

VX)" 1 O(x)-lIfM = (O(X)oV(X))'1(1) -= q(t). (2.28)
Then, letting a 6 Flou(X) arbitrary and choosing f = O(X)(a) in (2.28), since by

Theorem 2.1, O(X)'I(I(X)(a)) = a, one obtains

Vx)l(a) = q(O(X)(a)), (2.29)
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where by (2.21)

iq(O(X)(an g,(O(X)(a)) = (sup(t : t e u & x e at) x e X),
(2.30)

and for each t E J q(O(X)(a))Y by (2.24),

(OX)a) = (O'(X)(a))' I(t). (2.31)
But, Theorem 2.1 shows

a= (O(X)(a))' [t, 1] (2.32)
and a += u a = 'j (O(X)(a)) 1 I[s1]

an t t<s! i t<s:51

(O(X)(a)) I( v [s, 1]) = (4i(X)(a))" (t,l]1 (2.33)
t<s 1

Combining (2.29)-(2.33), shows for all t e J -fX 1(a
(W()'I a), O()()) I(t =(OX)a)' [, 1 (X) (a))I tII

= a~ t a + , matching eq. (2.16). (2.34)

Finally, by (2.29) and (2.31),

a t - at+= O(X)(a)f' 1(1) # 0 iff t E range(O(X)(i = J q(O<X)(a))* (2.35)

Eq. (2.35) shows (2.14).

The proof technique of Theorem 2.2 leads immediately to

Corollary 2.1. O(X)0tp(X) :Pari(X) -4 Mem(X) is a bijection, where .$<X) 0IP4X) can

be expressed as in eqs. (2.27) and (2.24), with inverse (()wX)

Mem(X) -. Part(X), which can be expressed, using (2.23) as

W () IM= 1i(X)' ,0(x)- I(f) = q(f). (2.36)

Summarizing, the following diagram of bijections holds:

Flou(X)

WAX) / (X)

Figure 2. 1. Summary of bijections for Mem(X), Flou(X), Part(X).
The basic relationships are, omitting the (X) notation for 0, Wu, for all

q = (qt)tej q 6 Part(X), a = (aO6I 6E Flou(X), f e Mem(X), and all t E Lt, X E X
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0(a)(x) = supit : t eu & xeat} (W1(f)) = f'I[t,1]; (V(q)) t =u,sJq,t ;

J I =It:teu&a,- a +*0); (W1 (a)),=at-a +, all teJ I ;" (a) t- t- "(a)

( 0.o t)( q ) ( x ) = f q ( x ) = s ( f o r t h a t u n iq u e S e J q , w h e r u x E q s ) ; J 1 .37=

range(f); ((O)I O = f'l(s), all s E range(O.

3. Isomorphisms among Operations over the Fundamental Spaces: Introduction.

First note the following general constructive p;ocedure:

Let (X, *) be a given space with operation * over X which could be n-ary as

* : Xn - X and let Y be any other (nonvacuous) set such that T: X -4 Y is a

bijection. Then, define (n-ary) operation t(*) : yn -, Y by

d -1 -1 )) l 31r(*)(yI ... yn ) = t(*(T (yl).... ln all Yl. Yn E (3.1)

d -1
i.e.. T(*) = To*o "  (n-ary) ; (3.2)

so that T and * commute through r(*):

.(*(x I..... Xn)) = r*)(T(xl)..'(xn)), all x1. .xn E X, (3.3)

i.e., (X, *) and (Y, T(*)) are isomorphic through T. (A similar construction holds

when T7 is replaced by, say, q": Y -4 X throughout eqs. (3.l)-(3.3)' Call (Y, .r(*))

the space induced isomorphically by bijection -r.

We will apply the above procedure several times throughout the paper to determine the

natural isomorphic counterparts among operators defined over Part(X), Flou(X), and

Mem(X), based on the traditional Zadeh and Zadeh-extended operators and relations

with respect to Men(X). (See, e g., the standard text by Dubois & Prade (1980) for

background on these operators.) Specifically, the operators and relations to be

considered here are: I, cartesian products and their specialization to intersections; 2.

cartesian sums and their specialization to unions; 3, subset relations; 4, complement

operator; 5, attribute tranforms/functional extension principle; 6. inverse attribute

transforms; 7, modifiers -- intensifiers and extensifiers. Conditioning, an important

eighth type of operator will be considered separately in later sections, especially

sections 6 and 10.

First, a brief note or. the notation: Unless otherwise specified, X, Y, Z, X I , X2. ... Xn ,

Y, .... Y n E SET arbitrary but fixed for any arbitrary but fixed positive integer n.
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T: X -4 Y is any mapping and T' ?(Y) '4 Y(X) is its inverse mapping, where

30() denotes the power class of ()or the class of all (ordinary) subsets of )
n

Tn: x X. -4 Y is arbitrary as is H :u -4 u (recalling that u denotes the unit interval).
jl J

Also, choose any continuous n-copula, i.e., cdf of an n by I r.v. representing the

joint behavior of n one-dimensional marginal r.v.'s which are distributed uniformly

over u. Thus, cop is the cdf for Sj= ( V,..., V%), where : A -4u, j=l1,..., n,

* relative to some fixed probability space (A, .4,p). Dually, denote the DeMorgan

transform l-cop(l - (),., - ( )) (n-ary operation) by cocop (cocopula). (See

Schweizer & Sklar (1983) for general background.) In particular, note Zadeh's original

copula min, as well as prod and minsum(only, 2-copulas)

d
minsum(s, t0 = max(s + t - 1, 0), all s, t E u, as well as a wide variety of other

examples as given in Goodman & Nguyen (1985, sect. 2.3.6). Three important

examples of cocopulas are Zadeh's original max and probsum. and maxsum, where

d d
probsum(s, t) = 1 - ((I - s) -(1 - t)) and maxsum(s, t) = min(s + t -' 1, 0) (the latter
being only a 2-copula). (Again, see references above for further details.)

Also, let f(l), f(2), f e Mem(X), g E Mem(Y), and f. E Mem(X.), j = 1,.n all

arbitrary fixed. Use the multivariable notation

d d d n d
f =( .  (n arguments) ;X = (Xl,...Xn) ; YX = X X. (X 1'..X n ) E XX,

d dn
i.e., x. a X.i, j = 1, n ; ()(fI(x1).fn(xn)) ; for any I = (t 1..'t n) E un

d d
copWl = cop(t .. 't n) When X = . = X , fRx) = (f (X),.fnQx)) ,X E X.

The seven types of Zadeh -- and related -- fuzzy set operations and relations defined

through the membership functions to be considered here are in summary:

d
(1) cartesian product of f wrt cop = x cp(f) E Mem(xX), (3.4)

d
Xco (f) = cop(f(A)) , all 21 E X. (3.5)

In particular, for X = X I - n.

d
intcrsection of f wrt cop = n cp(0) E Mem(X), (3.6)

d
n~ coU)(x) = cop(f(x)), all X E X. (3.7)
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d
(2) cartesian sum of f wrt cocop = tcoo (f) e Mem(xX) (3.8)

d
tcop (A() = cocop(ft)), all A E X. (3.9)

In particular, for X = XI=..= Xn
d

union of f wrt cocop = vocop,(f E Mem(X), (3.10)
d

UCOO (f)(x) = cocop(f(x)), all x E X (3.11)
(3) f~)is in subset relation to f(2) iff, by def. , f(l) 5 f(2) over X. (3.12)

d d
(4) complement of f = V = 1 - f E Mem(X) (3.13)

d
(5) T-attribute transformn of f = TQf) e Mem(Y), (3.14)

d -1
T(f)(y) = sup(f(T (y)) sup f(x) = sup f(x), all y e Y. (3.15)

xeT 1 I(Y) T(x)=y
In particular, for X = X

d
T-attribute transform of f wrt cop = Tcop~f) E Mem(Y), (3.16)

d -1
Tco(f)(y) = sup(xco(f)(T (y))) = sup (xcoD() (3.17)

d d(6) T- -attribte transform of g = V (g) e Mem(X), (3.18)

1 d 1
V (g) = goT, iLe, T" g)(x) = g(T(X))), all x e X. (3.19)

d
(7) H-modifier of f = H~f, i.e., (H.f)(x) = H(f(x)), all x E X. (3.20)
Note that though (6) and (7) look similar in form, (6) is the composition of the
membership function on another Jr), while (7) is the composition of a function (H,
necessarily over u) on the membership function.

The next section constructs the isomorphic counterparts of the above over Flou(X).

4. Construction of Operations over Flou Spaces Isomnorphic to Those over Fuzzy Set
Membership Function Spaces.

Negoita & Ralescu (1975)i and Ralescu (1979) were among the first to develop a full
isomorphism between fuzzv set membership functions over a set endowed with Zadeh's
original operations min for intersection or cartesian product and max for union or
cartesian sum and flou (as nested collections of) sets with component-wise intersections
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and unions -- but not complements nor other operations. (This work extended the

earlier work of Gentilhomme (1968) who introduced finite collections of nested sets as
"flou" sets to explain multiple logic concepts through the use of ordinary sets, indeed

without referring at all to Zadeh's still earlier pioneering effort (1965).) Radecki (1977)

also considered independently a similar sitution, emphasizing the level set forms of the

nested sets relative to given membership functions.

In this section all of the above work is extended to include the seven types of

operations and relations introduced in section 3. The resulting isomorphism from the
procedure of section 3 applied to Theorem 2.1 show why it is natural to employ

Flou(X) as the algebraic basis for fuzzy sets. In addition to the notation introduced in
d () ()d

the previous section, denote a = (a ...'a ) e Flou(X) = (Flou(X1),....Flou(Xn)), when

e Flou(Xi), j = 1,...,n arbitrary. Similarly, denote h = (b(l),...,bn) E Flou(Y),

when 0  e Flou(Yi), j = l,...,n. Also a e Flou(X) and b e Flou(Y) are typical

d ()n d() (n
elements; O) = ( )(a( ),.... (a )) (n arguments); for any I e u , xas = a x..xa ,

- 1 n

etc. For clarity, bold face is used on some operations:
d

(1) car:esian product of a wrt cop = x cop(a) E Flou(x ), (4.1)

d _-1 -1
(XcopW)t = (0"1 (Xcop(O(a))))t = (Xcop(P())- [t, 11

= u n (xas), (4.2)
over all scucop(s)=t

for all t E u. Intersection becomes for X = X 1 =..= Xn'

cop (a) E Flou(X); (ncop(ra)))t = V n (n as), all I E u. (4.3)
copcop o ,.," all seu n

cop(s)-t

For the special case cop = min, note the reductions of (4.2) and (4.3)

(x x'.nJ) = lat(); (omna) = -n aCJ)'  all t E u."- (4.4)
I jn t' min I .=Ij~ll

d
(2) cartesian sum of a wrt cocop = f cocop(a) E Flou(xX), (4.5)
where analogous to the cartesian product case in (4.2),

(vcocop(e))t = V n(x as), for all t E u. (4.6)
over al su n,

co>Cop(.s)=t
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Union becomes for X = X1=..= Xn
e (eFlou(X); (U oo(a))t V n (V (a), t EU. (4.7)ucocop over al* -Eu,

cocop(s)=t

For the special case cocop = max, note the reductions of (4.6) and (4.7)

(tma(A))t = d a x = U) ) te EU. (4.8)ma X t )';=( ' V')" ( a)) = U atj=l j=l =

(3) For any ao) e Flou(X), j = 1, 2, it easily follows that

a(' :5a()if0al)5Oa() over X iff a(') c:a( 2 ). (4.9)
(4) a' e Flou(X) is given by , for all t E u,

= X -(a)- (I -t, 11 =X -a (-)+ (4.10)

where

a 1~+ =4a)I(I -t, 1] = v (a)- [ s'1] = -u a. (4.11)

(5) T(a) e Flou(T(X)), where for all t 6 u,

(T(a))t = (4, ('(a))))t = (T(4'(a)))- [t, 1]
=(y:y E Y & suptS:SE u &y ET(a S)) Z!)0. (4.12)

Define

d
T(a) = (T(a )t U* (4.13)

Now, T(a) 6 Fiou(T(X)). Proof: First, the left hand side of (2.4) can be verified

directly. As for the right hand side of (2.4): Let J c u, y E r) T(a5) Hence, y = T(x)
SO l

for some x Eas all s U J, implying y E T( r) a T(a ), using r.h.s. (2.4)
SJs sup(J)

property of a itself. Conversely, if Y 6 T(a su) there exists X E a su~)with

y = T(x). But, a sup(J) = Oa , so that y = T(x), X EaS all s Ei, implying

y e r) T(a s). Hence, r.h.s. (2.4) holds and thus T(a) e Flou(X).
SOi

Next, applying Theorem 2.1 to T(a), shows for all t E u,

(T(a)), = y : Y E Y & 4'(T(a))(y) : t) = (O(T(a)))- I[t, 1]1 T(a t). (4.14)

i.e., using (4.13),

T(a) = T(a). (4.15)
In particular, the multiargument case where X = xX becomes

(6 o l ,T o(a) = T(x co(a)). (4.16)
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(T1l(b))t = ('('r'(4,(b))) t = ((b)oT) 1[t, 1] = T'l(O(b) 1[t, 1]) = Tl(bt). (4.17)

(4.17) shows

T-I(b) = T'l(b) = ('l(bt))te u .  (4.18)

(7) The H-modifier of a is determined as

Hoa =-1 (Ho,€(a)) e Flou(X), (4.19)
where for all t e u,

(Hoa)t = (f'l(IO(a)))t = (H,(a)) I[t, 1] = (Ho,(a))'l[t, 1] = 0(a)'l(H'l[t, 1]). (4.20)
If H is monotone increasing with H(O) = 0 and H(1) = 1, then (4.20) becomes

(Hoa) t = 0(a)' [H' (t), 1] = a H1 (t) all t E u, (4.21)

whence
Hoa = a1 (4.22)

On the other hand, if H is monotone decreasing with H(0) I and H(I) = 0, then
(4.20) becomes

(Hoa)t = 0(a)' [0, H-1 (t)] = X - 0(a)' 1(H'l(t), 11 = X -I a 1 (4.23)

Summarizing the above results:

Theorem 4.1. Let * refer to any of the seven types of operations and relations defined

for Mem(X) (or Mem(xX)) in section 3, eqs. (3.4)-(3.20). Let 0-1I(*) refer to the
corresponding seven types of operations and relations given for Flou(X) (or related
spaces) in this sectior, eqs. (4.1)-(4.23). Then (using the X form for generality),

4: (Flou(X); 0-1(*)) - (Mem(X); *) is a sujective isomorphism.

Proof: Immediate consequence of the constructive procedure of section 3 for

replaced by 4, (and r by 4-I) relative to the bijection 4, as shown in Theorem 2.1.

In another direction, recall the concept of the sup norm of a fuzzy set membership
function (see e.g. Goodman & Nguyen (1985, section 3.3)):

d
11 II: Mem(X) -4 u ; Ilfil = sup f(x). (4.24)

XeX
Then,

I dI]'~~l= suplt : t E U & €'(f)t = f'llt, 11
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= sup(t: t e u & t s f(x), for some x E X) = flfl, all f e Mem(X), (4.25)
so that

110(a)II = 11all, all a e Flou(X), (4.26)
showing the invariance of 1111 wrt. Similar remarks hold for trace norms, where a
fuzzy intersection relative to a fixed membership function is used.

As a final segment to this section, suppose we restrict Mem(X) to Dist(R), the class of
all cumulative probability distribution functions (cdf's) over the real line OR (recalling

that a cdf F is characterized as F: IR -4 u being nondecreasing, continuous from the
right with F(--) = 0 and F(+*-) = 1). Also, define Ant(R) as the class of all
anti-distribution functions G over u in the sense that G: u -4 IR is any
nondecreasing, continuous from the left function with (abusing notation relative to the
domains of use) G(0) -* and G(l) = +**. Also, recall the pseudoinverse of cdf F as

given by

d
F0 (t) = inf F [t, 1], all t e u, (4.27)

with the usual properties such as FoF0 oF = F and F0
0F0F0 = FO, etc. (See e.g.,

Goodman & Nguyen (1985, pp. 121 et passim).) Dually, define for each G e Ant(IR),

GA and T(G), where
A d d

GA(x) = sup G - x), all X E X; TfG) = ([G(s), +-)) seU (4.28)
and let the range(r) be denoted as Pseu(R). Then, it follows that for all F E Dist(R),
G a AntO),

F A = F ; G6 =G, (4.29)

and hence ( )6 : Ant(IR) -4 Dist(R) and () : Dist(R) - Ant(IR) are well-defined inverse
bijections of each other. It also follows for any F e Dist(R) that

()= ((O,-l(F))tdie u ; W ,I (F))t = F'lIlt, 11 = IFO(t), +**=('))(t), (4.30)

and for any G E Ant(ll), ,(r(G)) = GA. (4.31)

The above can all be summarized by the following diagram of bijections:

Flou(IR) Mem()R)

Pseu(IR) Di st(iR)

(0

Ant(IR)

Figure 4.1. Summary of bijections involving cdfs as membership functions
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All of the above can be generalized to R n with suitable modifications. In addition, the
construction technique of section 3, as applied in the earlier part of this section to
developing the bijections among Mem(X) and Flou(X) into isomorphisms is valid
here as a special case, showing a basic connection between probability (via cdfs) and

fuzzy sets.

5. Construction of Operations over Partitioning Spaces Isomorphic to Those over
Fuzzy Set Membership Function Spaces.

d

In addition to the previous notation introduced, denote Q = (q(!),.,q(n)) where

q0) c Part(X.) is arbitrary, j = 1,....n. Similarly, denote

d d
(4),y)(.) = ( q(1))) ... (q(n))), noting q e Part(X) = (Part(X 1),,..,Part(Xn))

while ( O0(.) r Mem(X), etc.

By use of the isomorphism construction technique discussed in section 3, where now

= O.W and X is replaced by Mem(X), while Y is replaced by Par(X), the
following counterparts are obtained for the seven basic membership operations and

relations:

d
(1) cartesian product of q wrt cop = xcop(.q ) e Part(xX), (5.1)
where

Xcop(Q) = (- " 1 (0)" I(Xcop(4)(.)) (5.2)
with index set

n
X (q) = range(xcop(0,i°)(!a)) = Xcop(J (j)) (5.3)

cop rj=lI q
For each t E u,

In

(tcocop(q))t = ((0°P0'l (tcocop((0°P)oq))))t = VU all (x qi))
over al j=l s
EJ tcocop(q),

cocop(s)=t

(5.4)

with similar forms holding for "intersections".

d
(2) cartesian sum of 4 wrt cocop = t cocop(q) e Part(xX.) (5 5)
has index set
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n
J- -cocop(q) = t cocop(J qj)

(5.6)

For all t e u,

(i'coc°P(Q)) t = W ( ( )(tcoc°P((0°W)('Q))))t =oeU al (x q S.'

pcopover all j=1
!J Jtcocop Qq),

cocop(s)=t
(5.7)

with similar forms holding for "unions".

(3) For any q(l). q(2 ) E Part(X), q(l) q(2 )

iff (40t) (q(l))!_ (0 0 (q (2) .

over X
(5.8)

Then it can be shown that

q0) < q(2) iffsq(2) is a refinement of q(l), i.e., foreach seJq(l)

there exists I J(2) with s < 1 & q( ) = v q2) .

q t IEs

(5.9)

(4) For all q E Part(X) , q' (V-I) (((OoWv)(q))'), (5.10)

with index set

iq, rang(((OoV)(q))') = 1 - I = {1 - t t E Jq). (5.11)

For all t E u
(q')t (, (q) t)

X X X & f q(x)-- I - t)I =foI(l - t) =ql-. (5.12)

(5) T-attribute transform of q = T(q) = (OoW)l(T((4)(q))) E Part(T(X)) (5.13)

with index set

JT(q) = range(T((.Vi)(q)))

=range (T(fq)) =(sup s : s E Jq & y E T(qs) : E Y), (5.14)

For all t E u,

(T(q)) t = (T((4O.)(q))" 1 (t) = (T(f q W

= { y E Y & sup[S SE . , YE T(q s)) = t
(5.15)
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(6) T- -attribute transform of q = (VT1 (q)) = (0- 1  1 rI(OWq),

(5.16)
with index set

ST- 1 (q range(T' ((Oo i)(q))) range(T 1 ( Y )) = range(f 0T)

(s :s e q & T- I(q s 0).(5.17)

For all t E U,

IT1 (f )) 1I(t) =(f 0T) '(t)

TI(fq I t)Tlqt

(519

SH q rneH )=(q).

(5.18)

(7)t H-o= fe f(orV) qHofq = (~fqij') = (H -'t)f) I(

raIf~ W SE H(Jr ).

(5.20)

Summarizing the above results:

Theorem 5.1. Let * refer to any of the seven types of operations and relations defined

for Mem(X) (or Mem(xX)) in section 3, eqs. (3.4)-(3.20). Let (O)l)(*) refer to
the corresponding seven types of operations and relations given for Pai-t(X) (or related

spaces) in this section, eqs. (5.1)-(5.21). Then (using the X form for generality),

0. v : (Part(X);, (0. V)- I(*)) -- Mem(X);, *) is a surjcctive isomorphismn.

Proof Immediate consequence of the constructive procedure of section 3 for T

replaced by O (and 'r oy I~V' ), relative to the bijection o,,V as shown in
Theorem 2.2.

Remarks In summary, the following diagram holds, superseding Figure 2. 1
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(Flou(X) ; f 1I(*))

iso ijso

(Part(X); (00W)'l(*N) iso

F'gure 5.1. Summary of isomorphisms among Mem(X), Flou(X), Part(X).

Thus, the initial Zadeh operations and relations defined over Mem(X), the usual

semantically or numerically-oriented space representing fuzzy set membership

functions, can be isomorphically represented by both counterparts over Flou(X) and

those over Part(X). The last two spaces in light of Theorems 4.1 and 5.1 can be

considered to be the natural syntactic or algebraic structures representing fuzzy sets. Of

course, a number of other operations and relations could have been considered, but the

above seven seems to be a reasonable demonstration of the natural relations among the
spaces. (Conditioning will be treated later as a special type of operation.)

The next section considers the important special case of finite-valued membership

functions and the corresponding flou and partitioning sets, together with some

relationships with conditional events, as previously developed for ordinary (i.e.,

non-fuzzy) events and sets.

6. Finite-Valued Fuzzy Set Membership Functions and Relations with Conditional and
Unconditional Sets

In this section we specialize somc of the previous results for the general case to the
setting where only finite-valued membership furtions are considered and relate this to

condi,ional event algebra for the three-valued subcase.

In particular, let f E Mem(X) be such that it is arbitrary fixed with

range(f)=(tj:j=l .i ; 0 tl<t2<..<t m <_. l ,

(6.1)

for some arbitrarily fixed positive integer m and real tj. It follows that the

corresponding flou set is from Theorem 2.1

0" 1 (f) = (w- ()se u (6.2)
whcre now
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0, if t.n < s < 1;

C ltj+l tj+2' .. 'tm }
(0'l(f))s = f, I[s, 1] = -f('i+1 )Uf' I(tj+2)v ...t. "I(tmi),

if tj < s < tj+ I, j=l,2 ....m-I; (6.3)

X, if 0 ! s S t 1 .

The corresponding partitioning set is from Theorem 2.2

(,0 1) ) = ((() -(F))s)se J  (6.4)
(Oo ')'(f)

where from (2.37)

((o) 4 (I))s = f I '(s), s e J ) , (6.5)

where index set

S =range(f) (6.6)

given in (6.1).

It is clear by inspection that any finite partitioning q = (qs)sJ q e Par,(X) arises from

some finite-valued f. (See also the proof of Theorem 2.2.) Similar remarks hold for

the correspondences of finite flou sets, i.e. flou sets with only a finite number of

distinct component sets, and finite-valued membership functions. Summarizing:

Theorem 6.0. Theorems 2.1 and 2.2 remain valid when the bijections ,, V, and OoV'

are all restricted to the classes of finte-valued elements -- in the above senses -- of

their domains. Indeed, in light of Theorems 4.1 and 5.1, these bijections are actually

isomorphisms when so restricted. 2

Next, let us treat in some detail two particular subcases of finite-valued membership

,unctions and a modified third subcase.

First, consider single-valued, or equivalently, constant, membership functions and their

correspoaiding fiou and partitioning sets: For any constant c in u, use the standard

identification with c : X -. u, where

c(x) = c(constant), all x E X, (6.7)

is used. Denote the class of all such functions as

d
MemI(X) = ( : c : X- u, c Eu). (6.8)

The corresponding flou set is easily seen to be
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0-(c) = ((O' (c))s)seu, (6.9)

where for all s c u,

.1(c))s  c-I[S, 11 X, if 0!s5c,
0c if c<s5l.

Denote the class of all such flou sets as
d

FlouI(X) = 0'(c): c E u. (6.11)

Next, the corresponding partitioning set to c is
1 -1

(;6w)-1 (c) = (((00") (c))s)sej (6.12)
( 'l (c)

where

( = range(c) = Ic); ((€oy) I(c))c = c' (c) = X. (6.3)J( ,i'l(c)

That is,

(0.",)1(c) = [X) (with index value c). (6.14)
Denote the class of all such partitioning sets as

d
Partl(X) = (( 0 0-1 (c) : c Eu). (6.15)

Next, consider membership functions which can have possibly two values 0 or 1, i.e.,
the class of all ordinary set membership, or equivalently, indicator, functions

IA : X -4 (0, 1) E Mem(X), where the standard relation holds for any ordinary subset
A of X

d I if xeA,
1A(x) (6.16)A 0 if x E A'.

Corresponding to any IA' A E Y'(X), the flou and partitioning sets are:

1A) =(('l(1 A)))SE1u' (6.17)

where

A X, if s=0

S)) 'A A , if 0<s_<l.

( *oy)" 1(0A ) = (((oV)" I (IA))s)sEJ (6.19)
(@ov4l(IA)

index set

J 1 = range(IA) = (0, 1), (6.20)
(¢ / (IA)
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unless

A= X, implying J (1); or A = 0, implying J =0).

(6.21)

For A e Y(X) in general again,

(060-l(IA))0 = 1A1(0)= A'-' ((V )'(IA)) = 'A1(1)= A. (6.22)

The special cases A = X and A = 0 yield

(y'oI 1(1X ) = (X) (with index val. 1); (0'- 1(10 ) = (X) (with index val. 0). (6.23)

Denote the above class of membership functions with values in (0, 1] as M 2 (X) with

the corresponding flou class as Flou2 (X) and the corresponding partitioning set class

as Part2 (X).

Next, consider any fixed t e u and define the class
d

Memt,3 (X) = (0, t, 1) = (f .. f e Mem(X) & range(f) c (0, t, 1) . (6.24)

In turn, define the union

d
Mem3(X) = u Mem (X) (6.25)

tEU
noting from (6.24),

Mem 0 ,3(X) = Mem 1,3 (X) = (0, 1) = Mem 2 (X). (6.26)

For any t E u and any ft e Memn t,3(X)' the corresponding flou and partitioning sets

are:

0-1 (ft = ((4'(f))) u' (6.27)

X, if s=0

('l(ft)) s -l 1] = { ftI)ON f 1(l), if 0<s-<t, (6.28)

f (I), if s = 1.

(0-0, )'(ft) (((O°!V)'l(Ft))sEJ 1 "(6.29)

00- 1 (f)t
with index set

(io).- ) =range(f)= (0. t' 1 (6.30)

and for . E (0, t,l )
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f1 (0), if s =O

fj1 r"S I,(t), if s = t (6.31)

(1t(1). if s = 1.

Next. let q =(%o, qt ql) be any ordered partitioning of X where any one or two of

the component q S may possibly be vacuous. Denote Part (3 )(X) as the class of all

such ordered partitionings of X. In turn, for each q e part(3 ) (X), define the class

d
at()= ff f e Mem 3 (X) & for all s e (0, t, I), if qs *0, then f(x) = s, forzall

x e s t e u). (6.32)

In a related d;:cction, for any sets A, B e $(X), and any t e u, define one natural
extension of the ordinary set indicator function given in eq. (6.16) to three values as

(using V for max, A for min, etc.) I (A IB)'l

d 1.if XE A AB,
I1(A IB) (x) A.B(x) V B(x)t{0, if x eB A, (6.33)

Finally, define the function I (A I B) as

I (A IB) (X) =IAr)(x) V 'B()u= 0 ifX:E B -IA, (6.34)

d lB ) U , f x: ~ E B3'.

I (A IB) is the standard conditional event (or conditional set) indicator function, as first

developed independently by Schay (1968) and DeFinetti (1974). More on this topic

later; summarizing the above relations:

Theorem 6.1. The following relations hold among the special cases of Mem(X),

Flou(X), and Part(X) considered above:

Wi Mem(X Memlm j(X J Mem 3(X) c Mem(X), (6.35)

with the same relations holding in (6.35) when Memn is replaced by Flou and Part.

(ii) (Partj(X), (o l*),(Flou.i(X); Ol (*)), and (Mem.i(X); *) are all isomorphic
relative to the appropriate restrictions for V, 0, and OyI as given in Theorems 4.1 and
5.1 and summarized in Figure 5 1, when: j = 1, as given in (6.7)-(6.15)-, j = 2, as given
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in (6.16)-(6.23); and j = (t, 3), as given in (6.24)-(6.31).

(iii) For all A, B e P(X), one can make the natural identification
I(AIB) = (AIB) :t E u). (6.36)

Since also
Mem t,3(X) = u (at(q)), (6.37)qePart M

one also has the identifications

Mem 3 (X) = u (at(q)) = (I(AIB) : A, B E Y(X)).

qEPart(M
tEU

(6.38)

Proof: Straightforward from the definitions.

Brief overview of conditional event indicator functions and conditional events.

With the basic tie-in between conditional even indicator functions and three-valued

fuzzy set membership functions pointed out, a short summary of the development of

conditional events and their indicator functions will be presented. (See Goodman
(1987), Goodman & Nguyen (1988, 1991), and Goodman, Nguyen, Walker (1991) for

general background.)

In the following, unconditional events or sets are indicated by A, B, C, D, .. which, in

place of the concrete situation (via direct considerations or use of the Stone
Representation Theorem), where they are all subsets of X forming a boolean algebra
which is a subclass of P(X), one can consider them to form an abstract boolean algebra

R or events or propositions. In this case, the operators are: conjunction - (replacing
the more concrete n); disjunction V (replacing the more concrete u);, complement or
negation ( )' (which for simplicity is denoted by the same symbol as in the concrete

case); < (replacing the more concrete c); < (replacing the more concrete c); I
(replacing the more concrete X); 0 (replacing the more concrete 0); material/logical

d
implication * given as B * A = B' V A (replacing the more concrete B' o A);
material/logical equivalence 4-* given as

d
B t A = (B * A)(A * B) = AB V A'B' = (A + B)',

dropping the conjunction notation when no ambiguity arises, where

d
A + B = A'B V AB', etc.
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Conditional events arise in order to provide a systematic/rigorous way to deal with

irbitrary logical combinations of implicative statements relative to all probability

evaluations, when it is appropriate to interpret the probability evaluations of each

separate implicative statement as a conditional probability in the natural sense. For

example, suppose one wants to obtain the probability p((if B then A) or (if D then

C)), where the evaluations p(if B then A) = p(A B) (=p(AB)/p(B), assuming

p(B) > 0) and p(if D then C) p(CID) hold. No current standard approach exists in

the numerically-oriented field of conditional probability (including Renyi's

comprehensive extension (1970)) whereby the implicatives "if B then A" and "if D

then C" can be given meaning, independent of the particular probability p being used.

This is so that these expressions can be combined with other expressions, in conditional

or unconditional form, analogous to the way the unconditionals A, B, C, D, .. can all

be manipulated and combined, compatible with all probability evaluations. Certainly, a
"natural" candidate for such an interpretation is material implication, so that in the

above example one would obtain by the usual Poincart expansion

p((if B then A) or (if D then C)) = p((B * A) V (D C)) = p(B' V A V D' V C)

= p(B') + p(A) + p(D') + p(C) - p(B'A) - p(B'D') - p(B'C)

- p(AD'), p(AC) - p(D'C) + p(B'AD') + p(B'AC) + p(B'D'C)

+ p(AD'C) - p(B'AD'C). (6.39)

However, the main drawback to the above approach is that material implication is

inconsistent with conditional probability as its probability evaluation since it can be

readily shown: [Author's note: this and all subsequent results can be found in the above

reference Goodman, Nguyen, Walker (1991) or in Goodman (1991) in detail; for the

most part, these references will not be repeated here.]

p(B * A) = a - p(B) + p(AB) = p(AIB) + (p(A' IB).p(B')) _ p(AIB), (6.40)

provided p(B) > 0, where in general strict inequality holds above. Indeed, Lewis

(1976) showed that in general there is no function g : 2 _, R (boolean or otherwise!)

such that equality could hold in a modified version of (6.40), where * is replaced by

g, i.e.,

For all g : R-, R, it is not true that p(g(A, B)) = p(AI 3), all A, B E R. (6.41)

Thus, the search for syntactic or algebraic interpretations of implicatives compatible

with all conditional probability evaluations, if at all posible riiust lie ini functiuls
R2

g : -, S, where S I R. Of course, if all of the antecedents of the implicatives

present are identical, then no real problem arses and the search for algebraic

representations of "conditional events" g(A, B) = (A IB) is avoided. For example, in

the original example, if antecedents B = D, then it is indeed natural to compute in
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effect
p((if B then A) or (if B then C)) = p((A I BO V (C IB)) = p((A V CI B)) = p(A V CI B),

(6.42)
provided p(B) > 0, where in the standard approach to conditional probability, the
middle two expressions would not be used. However, when the antecedents are not all
identical, in general it would seem that one should seek a common denominator-like
antecedent so that the technique provided through the example in (6.42) could be
employed. It will be seen later that this is an equivalent viable approach to the basic
problem, but that the "common denominator" is not trivial.

While it was stated previously that the direction of conditional probability is away from

the algebraic, a relative handful of researchers have seriously considered this problem
at one time or another. This list includes: Boole (1854, Chpt. et passim), Hailperin's
restatement and rigorizing of Boole's ideas using the modern approach of
Chevalley-Uzkov algebraic fractions; Mazurkiewicz' original use of principal ideal
cosets (in a boolean algebra) to represent conditional events (1956), Copeland's futile
attempts (seen now in light of Lewis' "triviality" result cited above)(1950, 1956) at
forcing, in effect, conditional events to be in the original boolean algebra R;
DeFinetti's efforts, including the defining of conditional event indicator functions (as in

(6.34)) (1974) independent of all others; Schay's proposal for conditional event
indicator functi..s (1968), independently coinciding with DeFinetti, but also for the
first time, developing a full calculus of operations and relations for conditional events;
Adams (1975) proposing operations for conditional events that independently coincided
with Schay, but gave no interpretation for the conditional events themselves!; Calabrese

(1987), also independently of all others, first proposing that conditional events should
be interpreted as partial deduct equivalence classes, and in turn developed as Schay

before him, a full calculus of operations and relations coinciding for the most part with
Schay's results; and also recently, among others, Bruno & Gilio (1985) bringing forth
the basic is- e of combining implicatives compatible with conditional probability and

proposing, in part, a calculus of operations.

All of this lead the author and colleague (H.T. Nguyen) to inquire if there is any
unified approach to the basic probiem which does not rely upon ad hoc formulations for
both the form conditional events must take as well as their operations extend' the
usual boolean ones for the unconditional case. Certainly, the indicator function
approach of Schay and DeFinet was plausible, but Schay tbeing the only one of the
pair attempting to develop operations and relations) did not justify the choice of his
operations Similarly, Calabrese provided a rationale for his choice of the structure of
conditionl events, but other than ernp;rical appeal, none for his operations and
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relations. The others mentioned in the list above did not attepmt to develop operations

among conditional events with differing antecedents, except for Adams' formal

proposals previously indicated.

The results of this inquiry lead to the following, which provided a new calculus of

operations and relations for conditional events, while at the same time justified and

related the previous work of most of those mentioned above:

Call any g : R2 -4 S a feasible candidate for being a conditional even forming function

iff S = range(g) and

g(A, B) = g(AB, B); if g(A, B) = g(C, D),

then AB = CD & B = D, for all A. B, C, D e R, (6.43)

noting that when the above holds, then for all prob. p : R -4 u,

p(g(A, B)) = p(A I B), p(B) > 0; all A, B E R, (6.44)

is well-defined. Also, define the natural mapping nat : R -, R, where for A, B E R,

d d
nat(A, B) = R.B' V AB = {x.B' V AB: x e R)

= (y:yR&ABy_5B*A)=(y:ye R&yB=AB), (6.45)

the principal ideal coset generated by B' with residue AB, noting that for each fixed

B, nat(., B) : R -4 R/RB' is a homomorphism, where for any A E R,

nat(A, B) E nat(., B)(R) = (nat(A, B) : A e R) = R/RB', (6.46)

the boolean quotient algebra with the usual coset operations ., V. ('

nat(A, B)' = nat(A', B) ; nat(A, B)*nat(C, B) = nat(A*C, B),
* = , V, +, all A, B, C E R. (6.47)

Denote

d
= range(nat) = (nat(A, B) : A, B e R) = v R/RB' c .,R), (6.48)

BeR
the class of all principal ideal cosets of R.

Theorem 62. Structure of conditional events.

(i) nat is a feasible candidate for being a conditional event forming function.

(ii) If g: R-. S is any feasible candidate for being a conditional event forming

function, then g is globally isomorphic to nat. That is, there is a bijection IC: S -4 R,

where K~g = nat and for each B e R, KB : SB " R/R B' is a bijection, and hence, an

isomorphism through the same technique as in the beginning of section 3 inducing an

algebraic structure on S via R/RB', where
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d
SB = range(g(., B)) = (g(A, B) : A e R) (6.49)

and

d
xB(g(A. B)) = g(A, B)) = nat(A, B), all A E R (6.50)

a

Remarks. Theorem 6.2 justifies the choice for conditional event forming function to

be nat, so that from now on, define

d d
(AIB) = nat(A, B), all A, B E R; (RIR) = R = ((AIB) : A, Be R), (6.51)

and note, via (6.44), any prob. p : R -4 u extends consistently to p : (R I R) -4 u, where
p((AIB)) = p(AIB), all (AIB) E (RIR), p(B) > 0. (6.51')

It can be shown that the algebraic fraction approach of Hailperin and the partial logical

deduct approach of Calabrese, both cited earlier, are, in fact, equivalent to the form

nat.

Note the division of conditional events into 5 distinct classes:

(I) Unconditional events in conditional form:

Since it follows readily that one can identify
(A 11) = A, all A c R, whence R c (RIR) c ,Y(R), (6.52)

call all such conditional events unconditional ones, noting the probability assignment,
via (6.44) becomes here simp!y

p((A 11)) = p(A). (6.53)

(11) The indeterminate conditional event:

(A10)= (010)=R, all A E R, (6.54)
noting

p((010)) not defined. (6.55)

(111) Unity-type conditional events: Call the class of all such events Vz
ForalIBE R,B*0,(1IB) =(BIB)=RB' VB =R VB= x : xE R& x>B),

(6.56)

the principalfilter of R generated by B, noting the probability evaluation

p((B 1B)) = p(B I B) = 1. (6.57)
(IV) Zero-type conditional events: Call the class of all such events I

ForallBE R,B *0,(01B)=(B'IB)=RB' = (xB' :xc R), (6.58)

the principal ideal of R generated by B', noting the probability evaluation

p((OI B)) = p((B' 1B)) = p(OIB) = 0. (6.59)
(V) Proper conditional events:

For all 0 <A <1B< 1, A, B c R, (AB) = RB' V AB, (6.59')
with probability evaluation
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0 < p((AIB)) =p(AIB) < 1. (6.60)

Note also the basic properties for all (AIB), (CID) e (RIR), from (6.43):
(AIB)=(ABIB) & (AIB)= (CID) iff AB =CD&B =I-. (6.61)

Returning to the conditional event indicator function given in (6.34), note that by its
very definition and use of eqs. (6.38) and (6.61), where now the concrete case of

R c P(X) holds, it follows that Mem 3 (X) (with the modification that P(X) in its
characterization in (6.38) is replaced by R) and (RIR) are bijective through the

relation
I(AIB) " (AIB), all A, B e R. (6.62)

Finally, it should be remarked that the conditional event indicator function takes on the

following forms relative to each of the 5 types of conditional events:
(1) Unconditional events: I(All) = 'A E Mem2 (X). (6.63)

(I) Indeterminate event: 1(010) = u(const.) = Memt(X) (via (6.36)). (6.64)
(II) Unity-type conditional event: range(1(B 1B)) (u, 11, 0 < B < 1. (6.65)

(IV) Zero-type conditional event: range((0 1B)) = {0, u), 0 < B < 1. (6.66)
(V) Proper conditional events: range(l(AIB)) = (0, u, I).

The next theorem motivates the choice of operations and relations over (R I R) to be

determined:

Theorem 63. Characterization of monotonicity of conditional probabilities, ordering of

conditional event indicator functions and zero and unity values.

As before, let R c 9(X) be a fixed boolean algebra of sets. In addition, suppose
(needed only for probability part) R is atomic. For any (AIB), (CID) E (RIR), but

not indeterminate:

(i) If (A l B) is not zero-type and (C I D) is not unity type (certainly satisfied if both

are proper), then the following three statements are equivalent:

(I) 1(AIB) < '(CID) point-wise over X.

(M) AB _ CD & C'D< A'B (i.e. B* A_< D4 C).
(Ill) For all prob. p : R - u, with p(B), p(D) >0, p(AIB) < p(CID).

(ii) (A B) is of zero-type iff I(AIB) u over X (wrt order 0- u 1) iff for all

prob. p: R -4 u with p(B) >0, p(AIB) = 0.
(iii) (AIB) is of unity-type iff I(A IB) > u over X iff for all prob. p: R -4u with
p(B) > 0, p(A I B) = 1. 0
Consider next the standard functional image extensions of an arbitrary function, say,
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f: y -, Z to the power class level f : y)n _4 AZ), where

A d
for all i K) = (fx 1 ,...,x n):xe a ., j = 1,...,n). (6.67)

if tc 9(y)n and A~c 9~(Z) are subclasses of interest, it is important to determine
A A

whether the restriction of f to Y2 is closed wrt to 3 i.e., range(f restrict, to .2)

q A. In particular, for the problem at hand, Y = Z = R, f is any n-ary boolean

function over A, .2 = (R IR) n, and A= (R IR). It is fortuitous that in this case
closure indeed does hold, as the following theorem states, where for simplicity the hat

() notation is omnitted:

Theorem 6.4. Functionally-image extended boolean operations and relations over

(R I R).

For all A, B, C, D, A. B e R, j = 1..n

(i) All functionally-imaged extended boolean operations over R to being over (R I R)

are closed and computable for n =I and 2 as:

d
(AIB)' = Wx: xce (AIB)) = (A'IB); (AIB).(CID)

d
=(x.y : x E (AIB), y E (CID)) = (ABCDIr2); (6.68)

d
(AIB) V(CID) = (x V y : x e (AIB), Y E (CID)) =(AB V CDjq 2 ); (6.69)

d
(AIB) + (CID) = (X + y: XE (AIB), Y E (CID)) =(AB + CDjs 2); (6.70)

d
(CID)*(AjB)= (y *X X E (AIB), ye (CID))

=(CID)' V (AIB) =(C'D vABjt 2 ); (6.71)
d

(CID) 4:=tiAIB) = ty #*x :x E (A jB), y e (CID))
= ((CID) * (AIB)).((AIB) * (CID)) = ((AIB) + (CID))' =(AB t- CDIs 2), (6.72)

where

d
r= AMB V C'D V BD = A'B V C'D V ABCD;

d
q= AB v CD v B3D = AB v CD V A'BC'D;
d d

S 2 =BD; t 2 =C'D vAB3 vBD =C'D vAB vA'BCD. (6.73)
(ii) Part (i) above can be extended the samne way to arbitrary n, yielding the closed
formns for *, v, +:
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d
(AiIBi)...(An IBn)=(AiB,....AnBn~n;nA~ V.~ n V(A 1B '.A Bn)

(6.74)

d
q = A B VA.AnBnv (A'Bi*.AnBn (6.75)

d
(A,1 131)+..(A nIBd)= (AiBi+..+A nBnlisnd; sri= BI'-.* B n (6.76)
(iii) Extend the natural (partial, indeed, lattice) order :5 over R to (RIJR) by
defining analogous to the case for R,

(AIB):5 (CID) iff (AJB) =(AIB).(CID). (6.77)
Then, it can be shown

(AIB):5(CID) iff (CID) =(AIB) V(CID) iff AB:5CD &C'D 5A'B
iff AB 5CD&B*A:5D*C. (6.78)

(iv) Some miscellaneous properties:

Chaining: (AlI B).- B = AB; (AlI BC)- (C I B) = (AC I B); (6.79)
n

Bayes' Theorem: If A1 V..V A -B, then (A. B)=((BIA .).AjI V ((BlA.).A,));
nj=1

(6.80)
CV(AIB)=(CVAICVB); (AIB)=(CAlC*A);
(AIB) =(AB vB'.(010)); (RIR) =R V(R (010)); (6.81)
(BIB)=BV(0I0); (OB)=B'.(0I0);
2(=(R-i(OD)V(0I0); 27=(R (1)).(0I0). (6.82)

Equal antecedent/reduction to coset operations:

(A I I ) *.. (A nIB1) = (A, *..* AnlB) *, V, +.(6.83)

(i) Theorem 6.4 shows that any n-ary boolean function over (R I R) is not only closed

but is feasible to compute in terms of the antecedent and consequent consisting of

ordinary unconditional boolean operations. Thus, one evaluates any arbitrary
combination of conditional or unconditional events (remembering unconditional events
are conditional ones with 1 in the antecedent) for a given probability measure

p : R -4 u as

= p((comb I(A 1 1 , B I Bn comb 2(A I B1, BlA t~n B n' B n))), by Thin 6 4
= p(comb ,(A IB, 1 ,.., riBn , BdI comfb 2 (A IBi1, B 1, _~A n Bn, B)) by (6.51 ') (6.84)

finally obtained by eusual rules for conditional probability and boolean algebra

expansions.
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Thus, the original example addressed by material implication in (6.39) becomes

p((if B then A) or (if D then C)) = p((AIB) V (CID))

= p((AB V /cdIAB V CD V A'BC'D))
=p(AB V CDIAB V CD V AA'BC'D)

= p(AB V CD)/(p(AB V CD) + p(A'BC'D)), etc. (6.85)

(ii) Returning to Theorem 6.3 (i), it follows immediately that Theorem 6.4 (iii) (eq.

(6.78)) shows the basic compatibility of partial order < over (RI R) relative to

monotonicity of probability and partial ordering of conditional event indicator

functions: For any (AIB), (CID) E (RIR) not indeterminate with (AIB) not

zero-type and (C ID) not unity type, the following statements are equivalent for R

assumed atomic:

(I) 1(AIB) < 1(CID) point-wise over X.

(II) (A I B) 5 (CI D).

(I1) p(AjB) < p(CID), all prob. p: R -4u, with p(B), p(D) >0.

(iii) Theorem 6.4 can also be used to show that the algebraic entity ((RIR); -, V, (';

0, 1, (010); <) is such that -, V are associative, ideir, otent, cormutia've operations

compatible with < being a legitimate meet-join lattice ordering over (RI R), bounded

below by the zero element wrt ., V: 0, are bounded above by the unit element wrt .,

V: I. In addition, (RJR) with this structure has and V being mutually distributive

and absorbing, as well as involutive operation ( )' (though, not in general

orthocomplemented, thereby eliminating (RIR) here from being a boolean algebra as

R is) such that ( , V, (') is a DeMorgan triple.

(iv) Furthermore, it can be shown directly that (R I R) is always relatively

pseudocomplemented and hence pseudocomplemented. Specifically, denoting the

relative pseudocomplement of (CI D) wrt (AI B) as (C I D) c, (A I B) and the
, d

pseudocomplement of (CID) as (CID) = (CID) t, 0, and recalling the well-known

results (see Mendelson (1970, p. 182 et passim)) that relative to R, B C, A = B * A and

B = B',

d ,
(CID)'-(AIB)= XV(AIB)=(A VAIXVB);X=B'D'VC'D;(CID) =C'D, (6.86)

reducing to the corresponding unconditional situation for R, when D = B = 1. The

pseudocomplement mapping ( ) (R I R) R satisfies the Stone identity

(AIB) V (AIB) = l,all (AIB) E (RIR), (687)

showing ((RI R); , V, 0, I; ( ) ) is a Stone algebra. Referring, e.g., to Grfitzer
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(1978), the .,'let.l and dense sets of (R I R) are, respectively,
*RR) d d .

(RJR) = ((AIB) (AIB) E (R I) = R; D(RIR)- ()*'I(0) = Vi ((010)), (6.88)

yielding readily the relations (see also (6.82))

D(RIR) = (RIR)* V (010); (AIB)*' = (AIB)**, all (AIB) e (RJR); (010)'* = 0.(6.89)

(v) Converse to (iii) and (iv) above, if (RI R) is replaced by an abstract space S and

similarly for operations ., V, ( )', special elements 0, 1, (010), partial (lattice) order

<, and pseudocomplement operation ( ) , so that (S; ., V, )'; 0, 1, (010); <; () ) is

any abstract Stone algebra with involutive operation ()' making (., V. ()') a

DeMorgan triple, such that the formal relations hold in (6.89), then it follows that S

with the above structure is isomorphic to (RIR), with the same algebraic operations

and relations, where now R = S (guaranteed to be.a boolean algebra). Independent

of the above result initially, it can be shown that if m : R -4 Y(Q) is the standard

injective Stone isomorphism, where 0 is some set dependent upon R, for any given

boolean algebra, then (ml m): (RI R) -,4 (O) 19(2)) is also an isomorphism,

extending m, relative to the conditional event algebra structure obtained via functional

image extensions of the boolean operations for R and Y(2), where

d
(m I m)(A I B) = (m(A) I m(B)), all (AI B) E (RI R). (6.90)

Finally, if the above isomorphic representation of S by (S IS is written

h : S .- (S I S), then it follows that the composition (ml m)oh : S . (,()I ,(f2)) is

an injective isomorphism (02 dependent on S ), showing a full extension of the Stone

Representation Theorem for all such abstract conditional event algebras.

(vi) Higher order conditional events, i.e., formal quantities ((A I B) I (C I D)) can be

given meaning and reduced, in effect, to single conditional events by use of the relative

pseudoinverse operation, where A, B, C, D E R are arbitrary. This is based upon the

following observation resulting from eq. (6.45) applied to the definition of conditional

events:

(AIB) = (x : x E R & xB = AB) (6.91)
is the solution set of the conjunctive equation xB = AB, which has great intuitive

appeal. Thus, it is perfectly reaFnnable to define the higher order conditional event

d
((AIB)I(CID)) = ((xly) : (xly) E (RIR) & (x ly)' (CID) = (A 1B) (CID)). (692)
But it follows from the theory of linear equations in relatively pseudocomplemented

lattices (which (RIR) is) (see Gratzer (1978) or Goodman, Nguyen, Walker (1991)),

(6.92) becomes
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((AIB)l(CID)) = (RIR).((CID) c ((AIB).(CID)) V ((AIB).(CID)). (6.93)
Noting that the class union operation U : ,,(.9(R)) -4 ,(R) is a homomorphism wrt

all functionally-imaged extended operations over ,Q(R) to those over .Y(Y.(R)), it
follows that it is natural to inquire: What is the effect applying U to (6.93)? First,

note that (6.86) with (AIB) replaced by (AlB).(CID) can be shown to have the

invariancy

(CID) t ((AIB)I(CID)) = A0 V ((AIB).(CID)) = A V (AIB) = (CID) s (AIB),
(6.94)

but where now

d
A0 = (B * A).D' V C'D. (6.95)

Thus, (6.93) becomes

((A I B)l (CI D)) = (R I R). (A0 V ((A I B). (CI D))) V ((A I B). (CI D))

= (RR).A0 V ((AIB)- (CID)), (6.96)

by distributivity and absorption properties of the operations.

Hence, applying U to (6.96), using its homomorphism properties and the calculus of

operations from (6.58), (6.68), (6.96),

U((AIB)I(CID)) = U(RIR).A 0 V (ABCDIr 2 ) = R.A 0 V (ABCDIr 2 )

= (0lA6) V (ABCDIr 2 ) = (ABCDIB.(A'D' V CD)). (6.97)
Despite the nice algebraic properties of the above reduction, one drawback is that we

do not have compatibility with probability in the sense

d
p((A I B)I (CI D)) = p((A I B)- (CI D))/p((CI D))

=p(ABCDIA'B V C'D V BD)/p(CI D)

p(U((A IB) I(CID))), in general, (6.98)
unlike the single conditional event case where no U is required. More work must b.

done in this area; forcing closure for higher order conditionals may lead to

contradictions, analogous to Lewis' results (1976).

(vii) (RI R) with the fundamental image extensions of operations on R can also be

shown to be a modified version of Koopman's comparative conditional qualitative

probability structure as discussed in Fine (1973, pp. 183-186).

(viii) Often, it is more appropriate to consider cartesian products or jointness of

conditional cvcnts in place of direct conjunction, and similarly cartesian sums in place

of disjunction. Thi,, is especially relevant when e.g. conditional events (Aj

j = l,..,n are such that the B are all disjoint -- such as in flow chart instructions -- yet

eqs. (6.74) and (6.75) show that the conjunction always lead to a trivial zero-type event,

and hence zero probability evaluation, while disjunction always dually leads to the
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equally trivial unity case and a unit probability evaluation! Specifically, using the
functional image extension approach as before, it can be shown that for any
(A IB) e (RIR),j = 1,..,n,

(AIIB I ) x..x (AnIBn) = (A, x..x AnIBI x..x Bn) = (AIB1 x..XAnBnIBI X..XBn),

(6.99)

(AI1IB1 ) t.t (AnIBn) =((A, IBI)' x..x (AnIn)) = ((A' x..x A')' IB1 x..x Bn)

=(A 1 ..t A nIB 1 x..x Bn). (6.100)
Of course, with the use of cartesian products and sums, probability evaluations become
more complex with joint probability specifications now required. Finally, note that no
closure problems arise here, since all cartesian products -- and hence sums -- of boolean

algebras are still boolean algebras.

(ix) The calculus of operations and relations obtained by functional image extensions
of the boolean ones over R to (RI R) also lead to a sound and complete conditional
probability logic of propositions with the tautology class being 71 and the
contradiction class being X. In connection with this, it can be shown that the only

possible boolean-like function f : (RIR)2 -, (RIR), i.e.,

f((AIB), (CID)) = (fI(AB, B, CD, D)If 2 (AB, B, CD, D)), all A, B, C, D E R, (6.101)

for some boolean functions f1 1 f2 : R4 
-, R such that, in the spirit of (ii),

f((AIB), (CID)) E V1 iff (AIB) 5 (CID); all A, B, C, D E R, (6.102)

are f=f(l) and f=f( 2), where for all A, B,C,DE R,

d f2) d
f( 1)((AIB), (CID)) = C'D V AB V B'D'; )((AIB), (CID)) = (C'D V ABIB V D).

(6.103)
f(l) is actually the consequent of the natural isomorphic image of Lukasiewicz

three-valued logical implication, while f(2 ) is the natural isomorphic image of
Sobocinski's three-valued logical material implication. (See Rescher (1969) for

expositions on L3 and Sob3. The natural isomorphism connecting any three-valued
logic and some choice of conditional event algebra is given below.)

(x) Other topics concerning conditional event algebras have begun to be developed,

including: extension of random variables and relations with conditional random
variables; problems ot assignment of probability to conditional events relative to the
functional image assignment of many values in light of the coset representation of
conditional events as sets of events -- not the traditional single values (see also the
latter part of sect. 7 here), extension of the idea of independence to conditional events
(see also the Nguyen & Rogers paper in this monograph); and Frdchet-like bounds and
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probability expansions for various combinations of conditional events (in the same

spirit as e.g. Hailperin (1984)).

As a final topic in this review, consider the natural isomorphism between any choice of
conditional event algebra -- such as proposed here by functional image extensions, or
that proposed commonly (but independently) by Schay, Adams, and Calabrese, or an
alternative system also proposed by Schay, to be discussed briefly below -- and any
corresponding choice of 3-valued (truth-functional) logic. [We will employ the
abbreviation "ce-alg" for "conditional event algebra."]

Recall the operation construction technique of section 3, whereby a given bijection
between two spaces X and Y with X having a given algebraic structure induces an
isomorphism for Y now having the constructed algebraic structure. Of course, in
general, one cannot guarantee that the constructed isomorphic operations over Y will
be "recognizable" in some sense. Apropos to this, a basic connection was established
between 3-valued indicator functions and conditional events as given in (6.62) -- basic
bijection between Mem3 (X) and (RI R) -- and Theorem 6.3 (see also Remark (ii)
following Theorem 6.4) -- characterization of ordering. However, no algebraic
structure was imposed upon Mem 3(X). Of course, since Mem 3(X) .Mem(X) (up to
the identification of (6.36)), the Zadeh-like operations and relations over the latter cna
be used over the smaller class. (More on this later.) In response to the above remarks,

the following theorem holds (Goodman (1990)) (see also Goodman et al,1991)):

Theorem 65: The three-valued indicator mapping as the natural isomorphism
connecting all possible choices of conditional event algebras and all
truth-functional three-valued logics.

First, denote the class of all n-ary boolean-like functions f: (RIR)n - (RIR),

analogous to the binary case given in (6.10'), as booln(RJR). Recall that the unit
interval u is also used in effect as a single value between 0 and 1 and define

d
Qo = (0,U, U) (6.104)

as the common truth set of all three-valued logics to be considered. Any such logic is

Qn
specified by some set of operations /: Qn -o Q Q. " Then, there is a bijection

Qn Qn

0: booln(R I R) -Qo0  such that I ((RI R); bool n(R I R)) - (Qo; Qo°) is an

d
isomorphism: for all (A IB) = ((A1 IBl),..,(AnIBn)) E (RIR)n,
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I(AIB..)(x) = (I(&, IB1)(x),",.l(AnIBnd ) .)

for all x e X, assuming R c $X), and for all fe booln(RIR),

If(AI B)(x) = 0f(1(A B)(X)). (6.105)

Proof: The proof is completely constructive, enabling one to go from any three-valued

logical operator to a corresponding conditional event one and vice-versa. (Again, see

the cited references.) 8

In connection with, and as an application of, the above theorem, consider briefly some

of the approaches to defining conditional event operations extending the usual
unconditional boolean ones, other than the functional image extension approach used so

far -- and denoted from now on for convenience as the GN system. As mentioned

before, independently Schay (1968), Adams (1975) and Calabrese (1987), denoted
commonly as SAC, proposed identical ce-alg's. Actually, Schay also proposed an

alternative ce-alg (same reference), which will be denoted simply as S. The

complement, conjunction, and disjunction for these ce-alg's are, with the appropriate

subscripting, for all (AIB), (CID) e (RIR),
(A I B)'SAC d d GN =

=(AIB)' S = (AB)' = (A' B). (6.106)

d d
(A I B) VSAC (CID) = (AB V CDIB V D); (AIB).SAC (CID) =

((A I B)' VSAC (CI D)')', (6.107)

a DeMorgan assumption, whence

(AIB).SAC(CID) = ((B * A).(D * C)IB V D) = (ABD' V B'CD V ABCDIB V D).

(6.108)
(AIB) VS (CID) = (AB V CDIBD);

(A I B)- s(C I D) = (A I B)' VS (CID)')' = (ABCD I BD). (6.109)

Corollary 6.1. 3-valued logic characterizations of SAC, S, GN systems.

Under the mapping I ., as in (6.105), the following isomorphisms hold between all
operations defined for SAC, S, GN, and corresponding ones to be found in 3-valued

logic: SAC *-. Sob3 ; S ,-. B3 ; GN ,- L3 , (6.110)

wlieie Sub3 is Subocinski's 3-valued logic (see Rescher (1969, pp. 70, 342)), B3 is

Bochvar's 3-valued internal logic (Rescher (1969, pp. 29-34, 339)), and L3  is

Lukasiewicz' 3-valued logic (Rescher (1969, pp. 22-28, 335)).



Algebraic and probabilistic bases for fuzzy sets 37

Proof: Consequence of Theorem 6.5. a

Independently, Dubois & Prade (1989, 1990) have expressed interest in the
development of conditional event algebra and, by informal means, pointed out the same
correspondences as in Corollary 6.1, without recognizing the more general impact of
Theorem 6.5. Recently (Goodman (1989)) a minisymposium was organized on
conditional event algebras, as evidence also of the growing interest in the field.

Corollary 62. A characterization of GN.

Call any f, g : (RI R)2 -, (R I R) with f extending ordinary conjunction over R
and g extending ordinary disjunction V over R, monotone preserving iff

If((AIB),(CID)) < 1(A IB)' 1(CID); g((AIB), (CID)) ' 1(AIB)' I(CID) (6.111)

pointwise over X (still assuming throughout here that R c 9(X)).

Also, for any operations f, g: (RI R) 2 
- (RIR) extending ., V over R and

h : (RI R) -4 (R I R) extending negation over R, call the system (f, g, h) a common
antecedent homomorphism (or coset compatible) ce-alg iff for all A, B, C E R,

h((A I B)) = (h(AB) I B); f((A I B), (CI B)) = (f(AB, CB)IB);

g((A IB), (CIB)) = (G(AB, CB)IB) (6.112)

noting that necessarily h(AB) = A'B,

whence h((A I B)) = (A' I B) (=(A'BIB)). (6.113)

Then:

(i) of the 81 possible binary boolean-like ce-alg's (f, g, h) extending ordinary

conjunction, disjunction, negation, respectively,, over R to (RIR), which are

DeMorgan for h such that

h((AIB)) = (A' IB), all A, B e R. (6.114)
there are 4 which are also commutative and monotone preserving. Letting f =•

j = 1, 2, 3, 4, for all A, B, C, D e R,

(AIB)- (CID) = ABCD; (AIB). 2 (CID)=(ABCDIr 2 V B'D');

(A IB). 3 (C ID) = (ABCD I B V D); (6.115)
(A I B). 4 (CI D) = (ABCD I r2 ), (6.116)

where r2 is given in (6.73), noting that the SAC and S ce-alg's are not among this

group, but GN is (determined through ).

(ii) The unique boolean-like ce-alg extending ordinary conjunction, disjunction, and

negation which is DeMorgan for extended negation h satisfying (6.114) and which is

monotone preserving, possesses the common antecedent homomorphism property and

for which its conjunction and disjunction extending operations are mutually distributive
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and idempotent is GN.
Proof: Consequence of Theorem 6.5. (Again, see the Goodman and Goodman,

Nguyen, Walker references.) 0

Remark. Since Lukasiewicz-1 , (min, max, 1 -()) logic is the core of Zadeh's fuzzy
set operations relative to the space Men,(X), then Corollary 6.1 shows that the

specialization of fuzzy sets and their Zadeh operations to L3  filf M3 (X) is
isomorphic to the GN conditional event algebra over (R I R).

Flou and partitioning sets corresponding to conditional event indicat c functions.

With the basic properties of conditional events and their operations and relations

established and tied-in with co '-'ional event indicator functions, it is of some interest
to reinterpret eqs. (6.27)-(6.31), using the identifications of (6.36)-(6.38): For any A,
B E R (c P(X)), the corresponding flou set to I(AIB) is

(A )= I B) (I(AIB) : t E j); (AIB)t) = ((0'l(l(AIB)t))s)s5u; (6.117)

X, if s =0,

for all s eu, (O'l0I(A {B)t B*A,if0< s 5t, (6.118)

forallsu, A oB, ift < s l,

and the corresponding partitioning set is

(0o0f)1(1(AIB)) = ((o )'l(l(AIB)) t E u), (6.119)

with index set

(0o.0)1 (A = B) t (0, t, 1), (6.120)

and forany se {0, u, I),
B -A,ifs=0,

0 ( (A B)t)) s = B', ifs=t, (6.121)

I A rnB,ifs= 1.
Analogous to (6.38) for Mem 3(X), obtain through the identifications of (6.36)-(6.38),

Flou 3(X) = (0'l(l(AIB)) : (AB) E (RJR)), (6.122)

Pa 3(X) = {(00 V)1'(l(AB)) : (AIB) E (RIR)}, (6 123)

and clearly Mem 3 (X), Flou 3(X), Part3 (X) are all bijective under the restrictions of 0,

V', o (analogous to the bijection part of Theorem 6.1 (ii)).

Again, from the remark following Corollary 6.2, the Zadeh fuzzy set operations for

conjunction, disjunction,, and negation, i.e., min, max, I - ( ), respectively, applied to
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Mem3 (X) component-wise yield an isomorphism with GN ce-alg: For = mn, max,

for all s, t e u,

(I(IB) t * (cID)t)s = (I((AIB)61(,)(CID)) )s 1 I ((AIB) )s ( s(A IB)')s (6.124)

i.e., component-wise over X

min(l(AIB) , I(CID) I (AIB).(CID); max(l(A I B) , 1(CID)) = I(A I B)V(CI D);

(6.125)

I - I(AIB) = I(AIB)' (6.126)

with (AIB).(CID), (AIB) V (CID), and (AIB)' all obtainable from GN as in

equations (6.68) and (6.69).

Hence, the construction technique of section 3 yields the compatible results for the

corresponding flou and partitioning sets, using (6.117)-(6.121) (first, flou):

(1D,' ( 1 0, (6.127)A IB)) * (CID )) = I((AIB)01 (*)(CID)
i.e., for all s, t E u, * min, max, and noting (see s,xt. 4) * = min' Umax'

respec :ively,

(-(i (A B) t)s N (0"1 (1 (CI D) t)s N " ((A I B)0" I(*)(CI D))t) s

X, if s = 0

r 2 * (Ar)BnoCD) = (AnBnD')v(B'oCnD)u(B'oD')

= if 0 < s !5 t, (6.128)

(AnBr CD)nr 2 = AnBnCnD,

if t <s<1

for * -min and 0-1 (*) = .;

X, if s = 0

q 2 * ((AoB) u (CrD)) (A'oBrD') u (B'oC'nD) u (B'nD')

v (AoB) u (CrD) (6.129)

if 0< s < t,
((AnB) u (CtD)) q2 = (AoB) u (C)D)

if t < s < I,

for * = max and vp(,) =

(W10I(AIB)))" I (AIB)'), (6130)
ike., for all IS, It E U,
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X, if s =0

(AB)))s- = B * A', if 0< s t, (6.131)
B A, if t<s 1.

Furthermore, by use of the basic identities

(B * A) n (D C) = (r2 * (A A B o C o D)); ((B * A) u (D * C)

= (q2 * ((A B) u (C n D)), (6.132)

which, in their own right, are exact material implication parallels of the corresponding

conditional event identities in (6.68) and (6.69), it follows by inspection of (6.118), that

* in (6.127)-(6.129), for * = min, max, and correspondingly, for 0-l() = ", V,

relative to each of the three possible set values component-wise are isomorphic, i.e.,

symbolically,
XX X 0" 1 (*X

B *Al * ID *C (B *A) O_(*)(D C)Q
AXB CAD o (A A B) 0'(*)(CAD). (6.133)

Similarly, for the partitioning sets,

(0o0l(l(A IB)) * (CI)(l c1D)) = ( poV)-l(l(AIB)-1(*)(CID)

(6.134)

i.e., for all tE u and se J ={ V (0, t, ),(€'oW)'(1 1
((A l B)O" (*)(C l ))

((°/'~(A lB)t))s * (( IoW)'(1)ClD)))s = ((°)'(
.D)t ((AI B)0"I(*)(C ID))t ) N

r2 -(AAo B o CAD)= (A' A B) u(C' A)D), ifs=0,

r2 = (A A) B n D') u (13' o C A D) v (B'3r D'), ifs =t,

(An B n C o D) A r 2 = A A B n C oD, if s =1
(6 135)

for *=min and g-l(,)

q2 A ((AoB) u (CoD)) =A'nB nC' A D, if s=0,

I- (A' ,B r,) ),, (13' C',nD) .. (B' ,D'), if:--st,

((A oiB) u(Cn D)) ) (AnB)u(Cn D), if s=1,

(6.136)
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for *max and 0- (**)= V;

(0-0)'I0I(A IB))) ' = (0o).I(1(AIB),) (6.137)

i.e., forall tE u and sE O,t, 11

-1 -A' =AeB,ifs=O,

( '( I A' n B=B -1 A, if s= 1.

(6.138)

In summary:

Theorem 6.6. Apropos to eqs. (6.117)-(6.138), the following diagram holds,

superseding Fig. 5.1 for the restriction to three values:

(Flou3 (X) ;., V, ( )')_

isomorphism. / V 0\ somorphism

(Part3 (X) ; .,V,( ) ') (Mem 3(X); min,max,l-0))

isomorphism I 1 isomorphism

((RIR); GN:-, V, ()')

d O.Vr, R c 9(X) boolean algebra; (-,V)=(min' max)

Figure 6.1. Summary of isomorphisms among ((R IR); GN), Mem 3(X), Flou3 (X),

Part3(X).

Proof: Combine the results of eqs. (6.117)-(6.138) with the compatible results of

Theorem 6.1 (ii).

7. Models and External Probabilities of Fuzzy Sets and Relations with Conditional

Event Indicator Functions

The primary purpose of this section is to relate on a firm foundation the concept of a

model as a consistent numerical evaluation relative to: fuzzy sets in general, and

conditional events, in particular, and an appropriate fixed point relative , all

membership functions at that point. In turn, this allows for a rationale to define

probabilities for fuzzy sets, in general, and condt-6nal events, in particular. To this

end, assume throughout that boolean algebra R c Y (X). Also, recall (Mendelson

(1970)) the concepts of filters and ultrafilters for R. Call R atonic , if all finite

subsets of R -- and hence all subsets of R whose complements are finite -- are in R,
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which imnmediately implies R is atomic. For such R, then essentially any ultrafilter

Y of R is in the principal ultrafilter form

d
Y= Yx =(A :x EA E R) cR, xeX. (7.1)

In any case, denote the class of all ultrafilters of R as Dl(R). Also, define the
mapping 4 : O2(R) x Flou(X) -4 u, reminescent of the fundamental membership

mapping 0 (see (2.6)), where

d
4~(Y, a) = sup(t :t e u & a te Y), all Y e Q2(R), a e Flou(X). (7.2)
Next, define formally a model of Flou(X) as any function 4: Flou(X) -4u which is a

homomorphism relative to (rmine Umax' ( )') over Flou(X) and (min, max, 1 - ( ))
over u, and hence over Mem(X). If, also 4 is an infinite homomorphism relative to

(Umaxt max) and a homomorphism relative to (ripod prod) for the spaces Flou1 (X)
and Mem I(X), then call X' a strong model of Flou(X). Finally, define

d
MOd0 (X) = [ 4( , :YE 92(11)) (7.3)

and denote the class of all strong models of Flou(X) as MRd(X). Before giving the

main theorem, the following lemma should be pointed out:

Lemma 7.1. If R c 9(X) is atomnic 0 , then for any YE Q?(R), there is a unique

corresponding X E X such that

S=Y x, & (Y x a) = tO(a)(x), all a E Flou(X). (7.4)

Proof. Use the definition of ip in (2.6), noting from (7.1), for a = (a tEcU'
a tE 5 'x if XEat, all XEX, tEU. (7.5)

Theorem 7.1 Basic characterization of strong models of Flou(X)

The equation MRd(X) = Mod0 (XM (7.6)
is true. More specifically, the following holds:

(i) For each 5 E Q(R), 4(Y, -) . Flou(X) - u is a strong model of Flou(X). In
particular, note the case when R is atomic. by Lemmia 7 1. (7 4) holds.

(ii) For each 4 E M~d(X),
d

51x a:aER&lia C()EQR (7.7)
and
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X= 4(Y h)' *) e Mod0 (X. (7.8)

(iii) For each X E M-od(X), there is a unique x XeX such that

A)= 4i(a)(xd., all a e Flou(X). (7.9)

If R is also atomic0 , then (7.8) and (7.9) combine to become

Y (x) () (0(-)(xj)Y4- (1); d(a) = 4~( ) GO , a) =~)x)

(7.10)

all a e Flou(dX).

(iv) X(-1(c)) = c, all c : X -4 U E Flou I(X). (7.11)

Proof (i): Let J cu, a(s) e Flou(X), f- s 4(a~s)), se 1, and 51 E O(R), all arb. Define

a (, .(s)))n (= supC(5, as))). Since (max(f5 ) (t, 1] 2tf t 11, all
un ~ SOJ SO

s e J, then by the definition in (7.2), a 2: P. Consider the converse: First, as a

supremum, for all 6 > 0, there exists s3 e J with f S x) sup(f (x)) < f Ss(x) + 6.
36 SO

d d
Since Y is afilter, if A =(x :x eX &sup(f(x)) :t)E Y, then B=(X:XE X&

scJ
f S3(x) 2: t - 6) e Y, since the above equation implies A c B. Then, for all 6 > 0,

d
using (7.2), letting C . = I X XcE X * f (x) : t),

Ct 5SUP (t :tcE u &B E 5)) SUP IS+ SUP t- E[-, I - 3]& CS~ E Y)

= 3+ SUP(SUP(t t E 0, 1- 3J& C St 51)
sEJ

=S+ SUP(sup(t tc EU& C5 c' 5 ) = 3+f3

implying that a :5 P. Hence, a c/ and thus 4(5, *)is an infinite homomorph. wrt

(Vmax' max) for spaces Flou(X) and Mein(X).

Next, for any ao E Flou(X) and f. d (ao~)) j =1, 2, arb., 4(59, min(f1,f)

min((51;, f I), 4(51, f 2) slightly abusing notation and using fact that 5 is a filter.

Conversely, since f it,1 ) c I It, 11 E 5 implies f iIt, I) E 5, by ultrafilter
property, the above inequality reverses, showing finally 4(51, ) is a homomorphism

d d
Next, letting f = O(a), t(, = 4(5, a') = sup~t - i Eu & D 9r),
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d d
Dt  {x E X: f'(x) > t), t = (5, a)' = inf(t: t E u & Et e ,1),

d
Et = (x e X : f'(x) t). By the definitions of sup and inf, for all 8 > 0, there are
t0 8 <t 0 t 0 8 +8, t 13- 8<t 1 t1 8  with D 10E 0e", D 1 1 , Et1 E 9,

E 8 .This yields the intersection (x : x e X & t0 8 < f'(x) tl,3) E 5r, from the

filter property of Y; t0 5 !5 t1 . If t18 - t0 8> 28, one could pick midpoint t2 8,

t03<t28<t''I&with t2 8 -t 0 8 >8 and t18 -t26>8. Since t2 8 >toN+8>to,
D E ,,by sup property of t. Since Y is a filter, D' = (x e X :f'(x) <t 2 8 )t28

cEt25 c Y. Since t2 8 <tl 8 -8<t 1 , then E2 8  , ", by inf property of t1, a

contradiction. Thus, 0 5 t1 8 - t0 8 28, for all 8> 0 arbitrary.

In turn, the above inequality implies, by the triangle inequality that

0 < t1 - t 0  t1 - t13 + t1 - t0 8 + t0 8 - to < 8 + 26 + 8 = 48,

which by the arbitrariness of 8, finally implies that t1 = t0 . Hence, 4(5r, -) is a

homomorphism wrt (()', 1 - ()) for spaces Flou(X) and Mem(X). Finally, by the

very definition of g(31, • ) applied to 0"1 (c), for any c E Mem 1 (X), 4(0, 0 1 (c)) = c,

completing the proof of (i).

Proof (ii): Eq. (7.7) follows from the basic properties of filters and ultrafilters. Next,

consider the basic identity for any f = O(a) e Mem(X):

f = sup min(l , t) (over X). (7.12)
tEU f ft,l]

By properties of inverse functions,

a = (f) = sup (min(1 I t)),
teu f" [t,l]

whence for strong model 4',

4(a) = sup ,4(O'l (min(l 1 , t))) = 10 a).

Proof (iii): Consider the identity

f = sup(f(x). x) (over X), (7.13)
XEX

where 8 is the Kr necker delta functionx

0, if y =x, yeX,
1, if y=x, yEX.

d
Then, for f = O(a), a E r'lou(X),
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a -1(f) = sup (fx)) min1

xeX

whence for strong model X,

,4(a) = sup min(d('(f(x))), 40(-( ()))) = sup min(f(x), ('((x))). (7.15)
xEXX xeX

The only remaining thing is to consider what values ,i(01 (3x)) can take:

case I. (O"(x)) = 0, all x e X. But, this case implies by (7.15) that X(a) = 0, for

all a E Flou(X), contradicting the fact that for all c e u, (7.11) holds.

Case 2. 4f1( 3 lx )) > 0 for at least two distinct xj e X, j = 1, 2. But, since 4 is a
homomorphism, wrt min'

0 = f'l(0)) = 4 (0-l(3xl 2)) = min(4(0"l(5xl )), x(O-'l(x 2))) > 0,

a contradiction!

Case 3. This is the only case left: there is a unique x4' e X such that

40-lOx.) > 0. Furthermore, since min(6 X , ' ) =0, by homomorphism,
o 4'4i10))- I 4'(4l(8))-I (, ))( : 0

4(0l(0)) = min("(f ) (5x)), implying )( ) 0,

whence, by the homomorphism property of 4 again,
(i" 1 (3ix)) = 1. -(7.16)

Finally, substituting (7.16) into (7.15) yields (7.9), provided that (7.11) is valid. The

latter is simply so due to a variation of the standard Cauchy theorem (Aczdl (1966, sect.

2.1 et passim)).

Corollary 7.1. Characterization of strong models when R is atomico.

Suppose that boolean algebra R (c AX)) is atomic0 . Then

M5d(X) = (0(.)(x) : x E X), (7.17)

i e., the strong models of Flou(X) coincide with the fundamental membership

evaluations at each fixed point.

Proof: This is a restatement of the right side of (7.10) of Theorem 7.1.

The next results, specified to M2 (X) and M3(X), can be developed without full use of

the strong model assumption of Theorem 7.1. Throughout, suppose: boolean algebra

R C ,9(X) is atomic 0 ; (0, 1 ) is endowed with the usual classical logic (C.,) operations
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., V,' =1 -; Q= (0, u, 1) has the ordering 0:< u 5 1 and is given the L3 or,

equivalently, Zadeh) structure min, max, ( )' = 1 - (), where now

0' = 1, ' =0, u' = t' : t E u) = u. (7.18)
Also, recall the equivalence of Flou2(X), Mem 2 (X), and RX) by Theorem 6.1 (ii)
(eqs. (6.17), (6.18)); one can restrict Flou2(X) and Mem 2(X) suitably so that 9(X)
can be replaced in effect by R. Recall, also with R replacing $X), the equivalence
of Flou3(X), Mem3(X), and ((RI R); GN) (Theorem 6.6). Thus, the definition of a
model remains well-defined when any of the equivalent spaces are interchangeably
used. Note also the natural identification for any model d

a ) = a(x) = 4(x), for all x E X. (7.19)

Let Mod2(X) denote the class of all models of R (i.e., Flou2(X)), excluding those
models identically zero over all singletons of X -- and hence identically zero over all

finite subsets of X, all in R. Similarly, denote Mod3(X) as the class of all models of
mem 3(X) (i.e., ((R I R); GN), etc.) with the same type of exclusion as for Mod2 (X).

Theorem 72. Suppose all of the above hold. Then:
(i) Mod2(X) = (1.(x) : 1 restricted to R, x e X). (7.20)
Hence, for any 4: R -, (0, 1) model of R, there is a unique xjE X, such that

d(A) = IA(X '), all A E R. (7.21)

(ii) Mod3 (X) = (1.(x) : 1 restricted to (RIR), x e X).

(7.22)
Hence, for any 4: (R I R) - Qo a model of ((R I R); GN), there is a unique x 46 X

such that

,4((AI B)) = I (A I B)(x j), all (A I B) e (R I R). (7.23)

Proof (i): If there exists x1, x2 E X with xl I x2  and X(x1), "(x 2) >0, then
necessarily 4(x 1) = " (x2) = 1, implying 0 = "(0) = 4(lx))( I x2 )) = min((Xl),
d (x2)), implying X(x,) = 0 or 4(x2) = 0, a contradiction. Thus, there is a unique
x,( with 4(x,) > 0, i.e, a(x,) = 1. Next, let A e R arbitrary. If x 'jE A, then

X(A) =,((x4 ) u A - (x)) =max(4(x 4 ), 4(A - Ix,})) =max(l, 4(A - (x4j)) = 1.

(7.24)
If x/c A, then x ,E A', whence by replacing A by A' in (7.24), one obtains

S- (A') = I - (A), implying 4(A) = 0. (7.25)
This,, (7.24) and (7.25) show (7.21).

Conversely, for any x E X, it follows from standard properties that, in fact,
I (x) : (R; ., V, ( )') -, (l0, 11; C2 ) is a homomorphism.
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Proof (ii): First note from eq. (6.81) the identity here

(AIB) = (A B) u(B' • (010)), all A, BE R, ('.26)

with corresponding indicator function form (see also (6.34)

I(AIB)(x) = max(lM)B(X), min(lB,(x), u)), all x e X. (7.27)
Now, it follows readily that the restriction of any model d of ((RI R); GN) to R is a

model of R and hence part (i) above is valid. Thus there exists unique xdE X such

that (7.21) holds. In addition, note that since (010) has the (unique) property that

(010)' = (010), then applying d,

d((010)') = 1 - d((010)) = 4((010)) E Q0 (7.28)

implying by (7.18) that the only possible value of 4((010)) satisfying (7.28) is

((M0)) = u. (7.29)

Substituting, from the above reasoning, (7./21) and (7.29) into the evaluation of any

(AI B) by 4, using (7.26) and (7.27) yields

4((A IB)) = max( 4(A f B), min(,f(B'), ,4((0 10))))

= max(lAnB (X.4, min(1B,(X, , u)) = l(AIB)(x,. (7.30)

Eq. (7.30) shows (7.23) holding.

Conversely, Theorem 6.6 shows (or it can be shown directly) that for any x E X,

1 (x) : ((RIR); GN) - (Q0 ; min, max, ()') is a homomorphism, i.e., for all A, B, C,

D R,

I(A IB). (CID)(x) = min(l(A I B)(X),, l(CID)(x)); I(A I B),(x) = - (A IB)(x);
(7.31)

1(A IB)V(C ID) (x) = max(l (A I B)(x) ' I (C I D)(x)).

External probabilities of fuzzy sets in general, and conditional events and their
indicator functions, in particular.

Remarks. With the stage set by the above results, we can now give a natural

interpretation to the definition of the external probability of a fuzzy set (callied in the

fuzzy set literature simply the probability of a fuzzy event -- see e.g., Dubois & Prade

(1980, pp. 141 et passim)):

Let (A, ,f, p) be a probability space, (X, R) a measurable space, and W : A -, X
some corresponding random variable. Then, W is not only induces the ordinary

probability space (X, R, poW'), but more generally the space (X, Flou(X), poW'l),
where for any a E Flou(X),
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d

(POW)(a) = Ew((a)(W)) = = Jx x(a)(x)dP(W' (x)),

(7.32)

can now be interpreted as the pW -- averaged model value of flou set a (or

equivalently, of fuzzy set membership function 0(a)). Similarly, the "mean" of a,

d
""(a) = Ew(W. -(a)(W)), (7.33)

when X c R n can be interpreted as the pW' averaged model-moment value of

flou set a, etc.

Finally, particularizing the above to conditional event indicator functions in view of the

previous results connecting them to fuzzy set membership functions and flou sets, for

any choice of A, B E R c ,X), eq. (7.32) yields

(P oWI)(l(A IB)) EW(I(A IB)(W)) = I.p(W I(A o B)) + 0.p(W'I(B - A))

+ u .p(W' (B'))
= p(W I (A o 13)) + u-p(w'lI(B')). (7.34)

Interpreting t literally as the unit interval, makes (7.34) represent not just a single

value but ?, range of values, so that denoting this turther interpretation here by a hat,

one obtains easily the closed interval

(poW )(I (IB)= [(W (A rp "l 3)), p(W'(A nB)), p_'((W (B*A))], (7.35)

using properties of inverse functions so that

p(W'I(B * A)) = 1 - p(W 1 (B)) + p(W'I(A o B)). (7.36)

However, this leaves the basic problem of how to evaluate or replace this interval of
values by a single one, which by inspection of the unconditional case should be

p(A I B). If formally, u were assigned the value p(A I B) itself, it follows that

substituting this ino (7.34) yields back p(AIB)! However, this formalism, as

intuitively appealing it is, is still onbly a formal mechanism. A more satisfactory

approach to this issue can be developed as follows (see also Goodman, Nguyen, Walker

(1991) for a brief exposition):

A simple and natural way to assign a single figure-of-merit to a closed interval of real

numbers is the computation of a weighted average of the upper and lower boundary

points of the interval. Depending on the criterion chosen, the "optimal" choice of

weights will vary. In general, the equally weighted mean need not be the choice --

unless a cnterion such as the minimization with respect to that point in the interval of

the sum of squared distances to every element of the interval is chosen. In line with
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developing an alternative criterion, consider first the following:

Theorem 7.3. In the following, let R denote the ordinary real line and let so < to e R

be arbitrary fixed and consider the closed interval [s 0 , t0 ]. Let I denote the class of

all intervals [s, t] q [so, t0 ], with s < t. Define mapping h1 :R x1 -4 IR, where

d
hl,(), [s, t]) = At + (1 - .).s; all A E R, Is, t] e I, (7.37)

the boundary-weighting function, and for each positive integer n > 2, define

recursively, the nth iterate of the boundary weighting function

d
hn(A., [s, t]) = hI(hn Al(, [s, t)), [s, t]); all A e R, [s, t] e 1. (7.38)

Also, define the special subclass of I,

d
10= ([Is, t] : [s,t] E I&t-s= 1 . (7.39)

Finally, consider for any [s, t] e I, the boundary-weighting invarianc.e class

d
H(ts, t]) = [A. A R D & eq. (7.41) holds for all n) (7.40)

hn(A, [s, t]) = hI(A,. [s, t]); n = 1, 2, 3,. (7.41)

With the above definitions established, it follows that:

(i) H([s, t]) = 0, for all Is, t] E 10 [ {u). (7.42)
(ii) H([s, t]) = IR, for Is, tI = u (7.43)

(iii) H([s, tl) = {Ist for all [s, t] e I 110, (7.44)

where

d
sA = s/(l - t + s), for all S, t E IR, t - s 0. (7.45)

(iv) In cases (ii) and (iii), the fixed point property also holds

h(, is, tj) = A; n = 1, 2, 3 ..... (7.46)

with , arbitrary e IR, for (ii) and A = A't (uniquely), for (iii).
(v) For all Is,tle I-1 0 ,

s X st < t iff Is, t] c u (proper inclus.) (7.47)

Proof: if A E 11(s, t), then, necessarily, choosing in (7.38) n = 2 and using (7.41) with

d
1 h1(h , Is, 11),

)S 1  
= im Oitl ( d to ) t + (I - AO S (7.4S)

Solving (7.48) for A I mmnediately leads, to the uni(Iue solution
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§ I -- Xs, if t - s 1. (7.49)

In turn, (7.49) through A is

AL-t + (I - A).s = -- s,tv (7.50)
which also yields the solution A = -Is,t, provided t - s ; 1, showing (iii).

Returning back to (7.48), when t - s = 1, it becomes

A1 = A1 + s, (7.51)

which, unless s = 0 -- whence t = 1 in this case and A1 can be arbitrary in It, has

no solution for A1. This shows (i) and (ii). (iv) follows for (iii) from (7.50), while for

the case of (ii), it is obvious by inspection that (7.46) always holds. Finally, (v) is

shown by consideration of the combination of possibilities I - t + s ?: 0 with t ? 1.

Note that Theorem 7.3 (iii) can be generalized in the following sense:

Theorem 7.4. Let [s, t] C u with s < t and X e u arbitrary fixed, not necessarily in

H([s, t]). Then,

d
h(A, is, t]) = I im h (A, Is, t]) = As t  (7.52)

n..4

with the sequence (hn(A, Is, t]))n=l,2.." decreasing to, fixed at, increasing to As' t,

depending on whether A : A s t , A = As t , A 5 As't' respectively.

Proof: First, note that if h(., Is, t]) exists, then, taking limits as n -4- in (7.38)

yields

h = li mhn =h 1(1 im hnl [s, t]) = hI(h., [s, t]),

the same formally as in (7.48) with A1 replaced by h.. In summary,

h(X, Is, ti) exists implies h(A, [s, t]) = Xs  (7.53)

Next, analogous to (7.48) with equality replaced by inequality,

hI(A, is, t) 5 A iff As' t < A. (7.54)

In turn, (7.54) shows

h2 (,L [s, t]) = hl(h1(A, is, ti), Is, t]) !5 hl(A, [s, t])

iff A s' t - hI(A, is, tj) if Ast ?, solving for A.

Continuing the above process shows the decreasing sequence
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(7.55) shows that h.(A, [s, Q]) exists, if St: X .lTe inequalities in (7.55) reverse,
showing finally

h(AO, Is, t]) exists, for all X e u1. (7.56)
* Combining (7.53) and (7.56) shows (7.52). a

As a consequence of Theorems 7.3 and 7.4, call the assignment
* d

h 0 (s, t]) = hi(lx5 , Is, t]) = XA5t, fcr [s, ti C U, (7.57)
the stable, or fixed point, boundary-weighting average of Is, t]. Extending this idea
further, if t4c u is arbitrary, the stable boundary average of a4 is defined through

the tightest closed interval around .4, [inf( .4), sup( .4)], provided that

inf(.4) < sup(.4) and [inf(.4), supG4)] c u:

d
h 0 (,4) =h0 ([inf(,4), sup(A')]). (7.58)

As a basic application of the above, functionally extend a give prob. p : R -4 u ot

p: P(R) -, 31(u), analogous to the way ordinary boolean operations were extended
from R to P(R) and then were restricted to the subclass (R I R): (See again the

discussion prior to Theorem 6.4)

A d
p(B) = (p(A) : A e B), for all B E P(R). (7.59)

Hence, (7.59) specializes to the following when B =(ti I B), for any A, B E R, noting

(6.45) and (6.51) show

(A IB) = ly y e R & A -B :y :5B A), (7.60)

whereby, using the monotonicity of unconditional probabilities,

p((A IB)) =(p(y): YE (A IB)) [ p(A -B), p(B * A)] (7.61)
where

inf(p((A IB))) = p(A.-B) & sup(p((A IB))) = p(B *A) = I - p(B) + p(A -B). (7.62)

All of this leads to

Theorem 7.S. Justification for assigning conditional probabilities to conditional events:

p((a I b)) = p(a I b).

Let p : R -~ u be a given probability measure (R either a boolean algebra, or more
strongly, a a-algebra). Then, for all A, B E R such that p(l3) > 0, the stable boundary

average of p((A 11B)) coincides with p~A I13).
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A

Proof: In eqs. (7.57) and (7.58) let 4= ((A IB)), s = p(AB), t = p(B * A), using

(7.61) and (7.62), yielding
A

ho(p((A I B))) = ho([S, t]) = xs,t

= p(AB)/(l - p(B * A) + p(AB))

= p(AB)/p(B) = p(AIB),

noting here that Theorem 7.3 (iii) is applicable, since I - p(B * A) + p(AB) = 0 iff

p(B) = 0, which does not hold here. a

Of course, other justifications for why p(A I B) is interpreted as the ratio of antecedent

to consequent probabilities, from the standard viewpoint of conditional probabilities,

not via conditional events, are readily available such as the functional equation

approach of Azcdl (1966, pp. 319-324). See also the game-theoretic admissibility

approach using conditional events, Lindjey (1982), Goodman et al (1991).

Returning to the computation of prob.bilities of conditional event indicator fuilctions as

part of the more general evaluation of probabilities of fuzzy sets, the basic quandary in

eqs. (7.34) and (7.35) t. i now be solved reasonably. The difficulty with obtaining

(PoW'I)(I(AIB)) is the presence of symbol or "third value" u, which if literally

interpreted, yields the equally appearing difficult interval form (pOW')(I(AIB))in

eq. (7.35). However, with the use of the stable boundary average of an interval, one

now obtains easily

ho((poW )(I(AIB))) = h0 ([p(W'I(A o B)), p(W-I(B * A))])

= p(W '(A o B))/(1 - p(W I(B 4 A)) + p(W'I(A o B)))

= p(W-' (A r B))/p(W'I(B))

= (poW 1 )(AI B), (7.63)
using (7.36), a result that is naturally compatible with, and extends, the classical

unconditional case

(pow, )(IA) = EW(IAW)) = p(w'(A))

- (pW'l)(A); all A E R. (761)
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8. Summary of Random Set Representation of Fuzzy Sets.

The following development is a summary of results to be found in Goodi .:an & Nguyr.
(1985, chpts. 5, 6). It is presented here only for purpose of ease of reference and as a
background for the concept of conditional fuzzy sets given in the next section.

First, let (A, .4, p) be a fixed probability space such that V: A-4 is a uniformly

distributed random variable. Let (X, 2) be a fixed measurable sp-ce -- 2c 9Y(X) is

d
a o-algebra, and hence a boolean algebra. For each x e X, let Fx( ,) =

{A :xe Ae 2)} be the filter class on x relative to .2 and let 'c 9( 2) be any

a-algebra with Fx(2) e K for all x e X. Call any mapping S : A -42 a random

subset of X iff S is (,., ')-measurable, in which case S indu~es the probability

space (2, I', pos'). Denote the class of all i,.ndom subsets of X as RS(X).
distinguishing random subsets only if they differ in their probability evaluations.

dis
Denote the corresponding equivalence relation among random subsets of X as =
for "equal in distribution". If S E RS(X) is such that range(S) E Flou(X), call S a
nested random subset of X and denote the class of all such as NRS(X) (up to

equivalence ). Also, identify Mem(X) with the more restricted class of all
functions in it which are actually (,2, Bu )-measurable. The following theorem is a
conglomeration of results from Goodman & Nguyen (1985), modified for the

definitions here:

Theorem 8. 1. Summary of basic random set representations involving fuzzy sets.
Part I.

(i) The one point cov'rage function v: RS(X) -4 Mem(X) is surjective, where

d d
v(S)(x) = p(x c S) = p(S e Fx) = (FoS'I)(F X), all x E X, S E RS(X). (8.1)
In particular, for any given f E Mem(X), one can choose (in general, non-unique)

d
S = f'W, I]= (x : x eX & f(x) ! V, i.e., for any o)E A,

S(0)) = -1(o), I=co :CO E A & f(col) > Y(o)).

(8.2)
(ii) The following statements are equivalent:
(I) S E NRS(X)

dis
(11) There exists f E Mem(X) such that S = f" ( 2e I].
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ds
(fl1) There exists a = (a )tfu e Flou(X) such that S = a ~,where

d
a tO=a for all o)e A. (8.3)

(IV) There exists q = (q~e q Part(X) such that

dis d
S q( ?)- = v t (8.4)

tej

(iii) For any choice of f e Mem(X),

S =f [V, 11 =q ) e NRS(X), (8.5)
where

q = (t) te rn e~f Part(X). (8.6)

noting that (1) and (II) are related via f = 4i(a) (Theorem 2. 1).

Motivated by the above results, denote for any a e Flou(X) and any q E Part(X), a

I d
as a uniformly randomized flou set and f (2t), where f = Oj,(q)), as a uniformly
randomized partitioning set; denote the space of all uniformly randomized partitioning

sets of X as Part(X; %1). Also denote the obvious bijections where a -4 a u and

q - (tp(V~Iq))) (21W), by the common notation id V : Flou(X) -4 Flou(X; 21) and
id 21 : Part(X) -4 Part(X; 20).

Theorem 82. Swnmnary of basic random set representations involving fuzzy sets:
Part 2

The following diagram of isomorphisms holds, extending the isomorphisms of Figure

5.1 to the randomized spaces by use of id 2

i d VJI dj

Part(X; 2 l)-y-- Flou(X; V1) =NRS(X)

F-igure 8. 1. Summary of isomorphisms for Part(X). Flou(X),
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and their randomiztatons and Mem(X).

Relative to Fig. 8. 1, the following relations hold for all f e Mem(X), a e Flou(X),

X e X:

a 2=id W (a) = v- (O<a)) O (a) [2, ] (8.8)

f(x) = (v~id P( E0))x = ( (f)) 2 =v v- (f))(X) = p(x E f' 1,1)

(8.9)

O(a)(x) = v<id V (a))(x) = v~a ,1)(x) = p(x E a =v v (O(a)))(x) = p(X E r' [I1 ]).
(8.10)

Also, directly from sect. 4 replacing index variable t by r.v. 21, i.e., applying id 2

(see eqs. (4.1), (4.5), (4. 10))

a e opb(= (0 (copo(O(a), 0(b)))) -(a oco b) Va ucco b =-(a u cob)2(

(8.11)

similarly;

%0a e{cop 21 te = 1~ ON 3 cop b 2() = Oa ')Cop b) = 0(- (cop0(O(a), 0(b))

-cop 0 (4i(a), O(b)) = copo(va 21'vO 2d),' (8.12)

and

l/(a ecpb 2 )(x) = p(x E (a ifcop b t/) = cop(p(x E a 21), p(x E b V) = cop(O(a)(x),

(8.13)
ja ecocop b 2( )(x) = p(x E (a eccpb 2)) = cocop(p(x E a 21), p(x E b td

=cocop(O(a)(x), O<b)(x)); (8.14)

a ' 021= ((1 0 (a))) 2=(a') 2'(.5

v<(id id((a 021id=(a OW) = O(a)' =v(a

(8.16)

v(a ',,)(X) = p(X E a '2~I-p(X E a =p(X E a 2~

(8.16')
noting

p(X E a ~)=p(x E O(a)'( I6, 1)= p( 265 O(a)(x)) = Oa()

(8.17)

p(x E b =p(x E O(b'[ I2V,1]) = p( V1 5 (b)(x)) = Ob()
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When cop = min and cocop = max, all of the above can be strengthened as a direct

uniformly randomized version of the Negoita-Ralescu representation (1975), extended
here in Theorem 4.1. For examplc.,

a 2fmin b ,= (a Amin b) i= a n b ,= 0(a)'[ V, 1] r) 0(b)'[ 2, 1]
=(min(o(a)(.), 0(b)0(.)))' 1[ 1, 1]

= (O(a Amin b))'l II, 11, (8.18)
etc.

In the next development, the single space X is replaced by the family of spaces X.,
j E J and the single uniform random variable V is replaced by the stochastic process

d
2Z= ( 2n0i , for some finite or infinite index set J, where _2' is determined in

distribution by some J-copula cop (with corresponding DeMorgan cocopula cocop),
where each 2j: A -, u is uniformly distributed. Use the abbreviation

d •

comb(x co p, tcocop ; a) to denote any typical logical combination of a = (a(o).)J k '

applying operations X copo in a well-defined way to a j ) e Flou(X.), j e K c J,

d dfinite. Use also the multivariable notation x = (Y ji K ' (a) (Oa(J)) K- jeK'
d

- j)jEK' and e.g., the expressions
d d

jK(x e 0(a)I., 11) = ((xj F (aJ)l[ 21.V, I])).Xj = X) ;J JEK'
etc.

Theorem 8.3. Isomorphic-like evaluations of arbitrary logical combinations of flou sets

through membership functions.

With the above assumptions it follows that if the combination is purely a repetitive

Xcop or tcocop , then the results below are valid with this restriction. However, for
the general case, the following holds:
(i) For (cop. cocop) E (min, max). (pord, probsum), then for all a E Flou(X) and

all x E X,

(O(comb(x cop tcocop; a)))(x) = p(comb(&, or, (x E 0(a)' 1 V, II)))

= p(comb(&, or; (_2 V 5(a)(x))))



Algebraic and probabilistic bases for fuzzy sets 57

=p( or & (i < O(a(i))(xi)))
jEI 0 iel

= (-1) c art (G )+ 1 . c o p ((  < 5(a(i))(xi))E (8.19)ffa3.c_.i °  " I., j e G)'

for some index sets Ij, j E I° determined by the combination.

(ii) For (cop, cocop) = (min, max), not only does (i) above hold, but in addition,

(O(comb(x co p 'cocop; a)))(x) = comb(cop, cocop)(O(a)(x)).

(8.20)

Note for logical combinations involving negations of compounds of flou sets, reduce by

DeMorgan properties the negations to equivalent combinations of x and t of the flou

sets so that essentially one has the original comb(x, t, ( )'; a) replaced by the

equivalent comb 0 (x, t; b), where some of the 0 = aO) ' and the remaining

b0 ) = a0 ) , j e K.

9. Conditional Fuzzy Sets.

In the past, a number of individuals have attempted to define conditional fuzzy sets.

Zadeh (1978, pp. 14-20), based on an analogy "though not completely" with conditional
probability, simply defined conditioning as a kind of specification, not at all reducing to

conditional probabilities. In particular, if f : X x Y -- u and f2 is the Y-marginal of
f, i.e.,

f2 (y) = max f(x, y), all y E Y, (9.1)
xeX

then Zadeh's conditional fuzzy set (or possibility) function of f given f2 at y is

f(., y) : X -4 u, i.e., formally the same as f itself with y fixed. Nguven (1978) also
proposed a conditional fuzzy set form not analugous to conditional probability. Nguyen

made an assumption that the conditional form should be the ratio of the joint

membership function to a function -- to be specified by a suitable criterion which he
developed -- of both X- and Y-marginals, again, unlike conditional probabilities. This

iculted in the form

f(ylx) = f(x, y).max(l, f1 (x)!f 2 (y))), x E X, yE Y.

(9.2)
Kosko (1986) reconsidering fuzzy entropy, also proposed that fuzzy conditioning could
be identified as a "relative subsethood", which for discrete X = y is a single number,

not a function of arguments
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d
(fl If2) =  

-(( (max(O, fl(x)) - f2 (x)))/ ) fl(x))

x X 
xeX

- ( min(fl(x), f 2(x)))/ I f2(x). (9.3)

xeX XEX

Hisdal (1978) proposed the definition, for f : X x Y -4 u, fI X-marginal,

d f(x, y), iffl(x) > f(x, y),
fy Ix) = [f(x, y), 1], if fl(x) = f(x, y), (9.4)

for all xE X, yE Y.

Ramer (1989), on the other hand acknowledging the work of Hisdal and Nguyen,

decided that for any A c X finite and f : X -4 u, letting

A = (xl,..,xm), X = X,..,xm , Xm+ 1 .... Xn); 0 _ f(x 1) f(x2) ..< f(xm  5_.. f(xn) _! 1,

df f(xi), i 1 ... m-1
f(xiJA)= 1 , i= m.9.5)

From this, Ramer obtains some natural relations satisfied by Hisdal's proposed

definition. In addition, he discusses the limiting continuous case and justifies the

approach through a minimal cross entropy criterion relative to all possible functions on
A. Bouchon (1987) proposed for any two functions f : X -4 u and g : Y -. u the two

types of conditional forms at any x E X, y E Y

d
(i) (f(x)Ig(y))t = sup(t : t E u & /(g(y), t) 5 f(x)); / u2 -. u cont. t-norm,

(9.6)
with special cases

I ,iff(x) _>g(y)
(f(x) I g(y))min  f ,X, if f(x) < g(y) (f(x) I g(y))pro = min((f(x)/g(y)), 1)

(9.7)
the left hand side of (9.7) being the well-known intuitionistic implication (Rescher

(1969, pp. 44, 45 et passim)).

d d
(ii) (f(x) g(y))N = max(Nh(g(y) , f(x)); Nh(t) = h (h(O) - h(t)) a negation,

(98)

where h u -4 (R+ is nonincreasing continuous with h(O) <- +-o and h(l) = 0.

Approach (ii) is clearly a generalization of the use of material implication when
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h = 1 - (. Bouchon, among other properties discussed, points out

A(f(x) I g (y)) 1 g(y)) = min(f(x), g(y)); /((f(x) I g(y))Nh, g(y)) = Af(x), g(y)),

(9.9)
analogous to the usual condition satisfied by conditional probabilities.

Yager (1983) also discussed various approaches to extending or modifying classical

material implication for fuzzy sets. (See also Sembi and Mamdani (1979) for a survey

and analysis relative to fuzzy decision-making.)

In all of the above approaches, no appeal was made to probability theory, except for the

obvious formal similarities. In fact, Mattila (1986) has concluded that fuzzy material

implication is not the appropriate counterpart of conditional probability, in keeping with

the distinction emphasized in this paper and others relative to the development of

conditional event algebra. (Again, see section 6, following eq. (6.38).) Goodman &

Stein (1989) attempted a definition for fuzzy conditioning, based upon the fuzzy set

analogue of the basic characterization of conditional events as the solution set of a

boolean linear equation -- see eq. (6.91). That is, if e is a generalization of Zadeh's

classical (min, max, 1 - ( )) system over Mem(X) (called there a semi-boolean

algebra, being a complete bounded distributive DeMorgan lattice) with conjunction *

and order <, for any f, g E I, the conditional form (fIg) is given by

d
(flg) = (h : h E e & h*g = f*g). (9.10)

This led to the form, for any f, g e Mem(X), using Zadeh's operations

(min, max, 1 - ()), for x a X,

f (x) ,if f(x) < g(x),
(fl g)(x) =(9.11I)

[g(x), ], if f(x) > g(x),

reminiscent of Hisdal's earlier independent proposal (see (9.4)). Operations among such

conditional entities were defined by use of the functional image technique, as shown

earlier here for boolean operations extended to conditional event form (see remarks

prior to Theorem 6.4). Unfortunately, unlike the boolean counterpart, closure of

operations did not hold, i.e., the functionally extended form for min over conditional

forms as in (9.10) did not lead back to the same conditional structure in (9.10).

It will be seen, however, that the approach taken here to defining conditional fuzzy sets

comes closest to Bouchon's- approach (i) for min = prod (see r.h.s. (9.7)), among all

the proposed definitions. tlowever, even in this case there is difference, as will be seen

below.

With all of the above background established and keeping in mind the random set
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representations of fuzzy sets as summarized in section 8, the following new approach to
fuzzy conditioning is proposed:

Suppose the same setting as in section 8 holds with (A, A,, p) a fixed probability

space, V= ( M) a stochastic process of uniformly distributed random variables
A - u governed by copula cop, a collection of corresponding spaces (X )jej with

flou spaces Flou(Xj) and membership function spaces Mem(Xj), j e J, etc. Consider

then w.l.o.g. any a(J) E Flou(X.) and r.v. , = 1, 2. Thus, as in section 8, there are

the natural correspondences
a(j) - 4 0(a )) l[ 2 , 1] V ( :5 O(a J))) - Vil(o, 0( 0 )] E . X j

(a(l) XCOP a (2) ) f--4 0-1 (€(a())() xcop O(a (2))( ")) :-" ( O ( a( ) ) &  (  2 -e (a (2) )

V- I (( I 2" (O(a()) ' O(a (2)))

a l[0, (a ( 1) )] ) (2(21(0, Oa(2))]) E . I2,

(9.12)
where the exponentiation of a refers to the actual relations

2'1I[0, O(a())] = ( 21[0, 0(a(J))(xj)])XX j = 1, 2,

(9.13)

VI 1[0 , O(a(1))] o V2110, O(a(2))A

?I 1 [0, O(a(ll)(xl)] ( 21 [0, O(a (2)(x2)]))Xjex j = 1, 2

(9.14)
Thus, the marginal flou sets, or equivalently, marginal membership functions

- x.
correspond via marginal r.v. V6. to elements in A J and the joint flou sets,

X IXX 2
correspond via joint r.v. (1 V 22) to elements . . Since everything
actually depends only on the range of values .4 for any choice of xi, for the most

part, we omit the x1, x2 arguments, but it will be always understood that these values
are present consistently, i.e., for any choice of (x1, x2) E X 1 x X2, for consequent and
same x2 for antecedent: We have already develuped successfully an approach which

converts unconditional events in a boolean algebra to conditional ones and allows for
feasible computations for naturally extended boolean operations and relations to these
conditional forms: namely conditional event algebra, as detailed in sections 6 and 7.

Hence, it is proposed that the conditional flou set (a(I)1a(2))co p , where f. = 0(a(J)
cop'
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j = 1, 2, as usual, are identified with the ordinary conditional set,

(ai) = (1 [0, (a(1)2)]) e ( 2),(a( 2 )) 2
(9.15)

where (a A) is the conditional event algebra (with choice of operations such as
GN or SAC, etc.) formed from a-algebra a, in precisely the same way (RI R) was
formed from R. Note also that (al3) has a well-defined indicator function

d
l(aI 3): A -, Q0 = (0, u, 1), where, as in (6.33),

1, if oE 1 [0, O(a(2))] n 221[0, (a(2))]

l(al)(&) 0, if ) E 2 1 I[0 , O(a (2 )) -l[0, Oa(1))A

u, if toc A -t 21[10, O(a(2 ))]

(9.16)
Next, consider the probability evaluation of (alp) by p, based on the usual procedure
(see the discussion in section 7 following eq. (7.31) and basic equation (6.51 "))

p((al) = p(al I) = p(a r)/ )/p(p), p(p) > 0, (9.17)
where

p(P3) = p( 1 1[0, Oa(2 ))1) = O(a (2)) (9.18)

since V12 is uniformly distributed over u, and

p(a n0) = P( V I110, O(a(1) A A 21[0, (a (2))M

= copo((a" I)(.), O(a(2))X. .)), (9.19)

by the very definition of cop. Hence, when p(P3) > 0,

(alp) = copoC.(a ( )(.), (a (2))(. .))/O(a )(. . .). (9.20)

But, since, O.aj )) = fj is the usual membership function corresponding to flous etao),

it is clear that (9.20) can be naturally interpreted as the conditional membership

function of Oa(l)) given Oa(2)), when the latter is not zero. Finally, define for cop
fixed:

For any f. E X., j = 1, 2, the conditional membership function
J J

(fl I'2)cop : X x X 2 - u, where

d
(f I f2)cop(xP x2) = coP(fl(xl), f(x2))/f(x 2 ). xj E X.

(9.21)
j = 1, 2, provide at x2 , f(x2 ) >0. In order to make this compatible with the
three-valued ordinary conditional event indicator function, define
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d
(flif2)cop(xl, x2 ) = u, when f2(x2 ) = 0. (9.22)

Combining (9.21) and (9.22) yields the compact rorm for all x. e Xj0

(fI I f2)cop = (coP(fl(x1), f(x2))/f(x2))' 3 (f2 (x2 )>O)

+6 (f2(x2)=O) .u, (9.23)

where, analogous to (6.36), one makes the natural identification

(f I f2)cop= I 2)cop,t : t C u), (9.24)

where analogous to (6.33). (f1 If2)cop,t is formally the same as (f1 I f2)COP with u
replaced by t, for each t e u.

Similarly, if one starts out with flou sets instead of membership functions, one can
define

d0((a( 1) 1 a(2) )cop) = (O a(1)) I O(a (2)) (9.25)
d

and procede with fj = O(ao)), j = 1, 2, as in (9.21) and on..on

Note also the special case where fI = 1A' Ac X1, f2 = 1B' B C 2

d01A I 1B)cop = max(IAx B , 1B , .u) = I(AxB iXlxB)= (AxX 21XlxB) = (AlB ) ,

(9.26)
the r.h.s. of (9.25) being for two arguments, one in X and the other in X2 . IF
XI  = X and A, B c X and the arguments are restricted to be the same.

x I x2 = x, then (9.25) becomes as in (6.34)

(1AI' 1B)cop = '(AIB) (single argument form), (9.27)

showing, so far, compatibility of form of fuzzy conditional membership functions with
the specialized conditional event indicator functions.

Next, returning to the motivating definition in (9.15), for conditional membershi
functions identified as conditional events (alp) in (Aj ,), it follows that the
natural definition of any operation among membership functions is given through the
counterpart over ( a I a):

Analogous to the setting leading to Theorem 8.3, assume (cop, cocop) = (min, max)

d
and that now "1= ( ) 2jjj, is a uniformly distributed stochastic process over u,

i=1,2
with probability space (A, A, p) fixed as before, 6. i : A -, u uniformly distributed
over u with I/ jointly governed by min Also, assume (Xj i)jEJ, given spaces

i=1,2
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with each X.P corresponding to Wi,i and that 0 e Flou(XJ,) ) 0 Flou(Xj,2)

arb., j e K.

Select an arbitrary index set K c J and consider any well-defined logical combination

of (aO)Ib())min through Xmin and tmax* Expressing this in multivariable notation

d
where e.g., (aI) = ((a0 ) I b))min)jE K"

d

(- = (S ,i)jK; xaXbJmin = ( 1(a)i(b))min (,ae))I(b)))n)jE K;
dx= (xi.i)i,. xji eX., je J, i =1, 2, etc.,

d
0(comb(xmn ' tm a; (a )min))(x) = comb(xmn ' tmax; (01(a) ))in(x))

d -I1
= p(comb(., V; (_VI I [0, a-(x )]I eI[0' O(b)(x2))))

= p(comb(&, or,; ((--( < O(a)X ))I( V b-

= p(a 0 10 ) .= (P(a0 n)30)1P(00))min,  (9.28)

with the right hand side of (9.28) interpreted in functional form dependent upon

argument x and where conditional event (a0 I PO) E (a.-"1 .4) is obtained via the

calculus developed out of Theorem 6.4 and evaluated via (6.51 '). In particular,

consider the single argument case where K = (1, 2), XjP = X, j = 1, 2, i = 1, 2, and for

convenience, let a = a1, b = b, c = a2 , d = b2. Then for *0 = m in, Vmax, xEX,

and letting

d da = ,Vl10, 0(a)(x)] V1 1 5l~ -< a)(x));/ V t ,210, 0(b)(x)] (?11,2: -< (b)(x)),

d -d -I 0 d ( ) ~ ) x)
Y' 2, 1 1 (c)(x)] %e ( 2,1 5 O(c)(x)), 8 = t220, O(d)(x)] L2 % e2,2 :

(9.29)

0((a I b) min *o (c l d)min) = (O(a)I O(b))min *o (O(c) I Vd))min

=p((alI *( 'l3) (0 = -I V)

{ p(a3 I f2) = p(apJy5)/p(r 2 ), if* = m (*o= .)

p(a3 V y8lq 2) = p(aPJV y8jq 2 ), if *o= Vmax (* = V)

(9.30)

where

d d
r2 = o'3 V 5 V a3y3; q2 = a3 V Y3 V a'PY", (9.31)

using (6.68), (6.69), (6.73), and evaluation (6.51 ').
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Simplifying (9.30) and (9.31) using elementary probability properties,

p(c43P* = rnin(41(a)(x), O(b)(x), 4(c)(x), 4(d)I
p(a13i V A) = min(Oa)(x), O(b)(x)) + main((c)(x), 4(d)(x)) - p(apyba),

(9.32)
with p(a3A) given in terms of cop and membership functions as in (9.31).

p(r 2) = p(a'13 V y'5) + p(aPAi5; p(q 2) =p(a3 V A5 + P(a'13/ 6),
(9.33)

p(ct'1 P VrY ) = p(a'J3) + p( b) - pW '1Y,4 (9.34)
p(a'3) = O(b)(x) - niin(41(a)(x), 4(b)(x)); p(y'8 ) = O<d)(x) - min(41(c)(x). 4(d)(x)).

(9.35)
p(a'13y6) = p(136) - p(P3A5 - p(ap3& + p(aft*6

-min(41(b)(x), 4(d)(x)) - min(41(b)(x), 4(c)(x), 4(d)(x))
-min(41(a)(x), 4(b)(x), 4(d)(x)) + p(a3A6. (9.36)

Even simpler is the negation evaluation:

0((alb) min' )(x) = (4(a) I 0(b))(x)' = p((cx I P)') = p(a' I1P) =1-p(a IIP)
= 1 - (4(a) I O(b))(x), (9.37)

where

p(a13) = p(cep)Ip(f3) = (4(a)(x), 4(b)(x))14(b)(x) (9.38)
if 4(b)(x) > 0.

Thus, (9.30)-(9.38) show that all extended boolean operations over conditional
membership functions are closed -- due to the conditional event algebra evaluations --

and feasible to compute: being only simple arithmetic functions of the copula at certain
subsets of (4(a)(x), 4(b)(x), 4(c)(x), 4(d)(x)).

Also, as a check, when 4(a) = IA' O(b) = 'B' 41(c) = I C, 41(d) = 1D' for any choice of

A, B, C, D c X, it is easy to prove, via (9 30), (9.31), and (9.37), that (9.27) shows

(I A IBWcop = (A IB) 1C' IDWcop = '(C ID) (9.39)

and for * o min' Vmax' corresponding to *= -, V,

A 1 Bmin*o(' I mi ='(AI ) o I(CID) ' (A IB)*(CID)

( IA I Brmin' =(A IB)' = '(A IB)' (9.40)

where the R.H.S. of (9.40) are the usual (ON) conditional event operations from
Theorem 6.4, given in the indicator function form.

Note that from its very definition, conditional membership functions always satisfy the
relations

(f~ 11) cp= f; if cop is assoc., (f I g)co = (cop0 (f, 0) g)cp (f Ig)op g = cop0 (f, g),
(9.41)
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for all f e Mem(X), g e Mem(Y), and copula cop arbitrary; the dot in the right hand

side of (9.41) being ordinary arithmetic product. Finally, it can also be verified

directly, using the definition in (9.23) that for f and g as above, together with the

assumption now that cop is associative and commutative (such as is the case for

cop = min or prod) and Z is any third space and h e Mem(Z) is arbitrary such that

sup(h(z) : z e Z) = 1 : (9,42)
(fig) cop = sup{I(f Icop.(g, h(z))cop.-(h(z) Ig)co p : z e Z) .

(9.43)

The result in (9.43) can be useful as an alternative to Bayes' theorem, where a

parameter of interest is described by f, observed data corresponding to g, and auxiliary

information in the form of attributes described by h, so that (flcop0 (g, h(z))cop can

be interpreted as an inference rule, while (h(z) I g)cop can b"-thought of as a

conditional error form. In practice, both the inference, rule and error form may have to

be obtained directly, rather than be built up from the antecedent- consequent form,

since these individual functions may not be known. The identity in (9.43) corresponds

to the well-known expansion

p(xly) = Jzz6 p(x I y, z). p(z I y)dz. (9.44)

Applications of earlier versions of (9.43) to problems of data fusion (and track
association, in particular) can be found in Goot ,an (1986). Further analysis and

discu ;ion of the above results may also be found in Goodman, Nguyen, & Wal'*r

(1991, chpt. 8).

Finally, it is of some interest to be able to determine the probability of a conditional

fuzzy set. This should extend the unconditional case given in (7.32), as well as ih.

modified conditional event indicator situation as presented in (7.32)-(7.36). There the

ambiguity caused by the presence of the u term leads to an interval of probabilities,

which was resolved by use of the stable boundary weighting average technique ((7.57),

(7.45)), and justified by Theorems 7.3, 7.4). Motivated by the above, suppose that

(A, 4, p) is a fixed probability space, X, .Y are given spaces, (X x Y, R) a

measurable space, W : A -, X x Y a random variable, and f Meem(X), g E Mer(Y)

arbitrary, with copula cop fixed Then,

d
(pow')((f Ig)cop = EwOf g cop(W) = cI eI + c2 .e2, (9.45)

by standard probability expansion, where also using (9.23),
d

c I = Ew((fl g)cop( w ) I g(W) > 0) = Ew(cop(f(W), g(W)) f(W) > 0),
(9.46)
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d d d
c2 = Ew((fIg)cop(W)Ig(W) = 0) = u; e = p(g(W) > 0); e2 = p(g(W) = 0).

(9.47)

Hence, analogous to (7.35), substituting (9.47) into (9.45),
(P.W'l)((f I g)cop ) C I'll + e 2 ' u = [Cl "el' Cl ' e + 2],

(9.48)

whence the stable boundary avemge, yields

ho((poW-')((fI g)cop))= (cle l )/(l - (cle1 + e2 ) + cle1 ) = clel/(1 - e2 ) =c ,

(9.49)

which checks with all special cases (including c.e. indicators, etc.).
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